Characterizing Teaching and Assessing for Understanding in Middle Grades Mathematics: An Examination of Best Practice Portfolio Submissions to NBPTS

Edward A. Silver and Vilma Mesa
University of Michigan

with
Babette M. Benken (Oakland University)
Angus Mairs (Chicago Public Schools)
Katherine A. Morris (University of Michigan)
Jon Star (Michigan State University)

March 2002

Preparation of this paper was supported in part by grant #ESI-0083276 from the National Science Foundation (NSF) to the Educational Testing Service (ETS), under the direction of Gail P. Baxter and Edward A. Silver. The authors are grateful to the National Board for Professional Teaching Standards (NBPTS) and key members of the ETS staff, especially Rick Tannenbaum, for facilitating access to the data used in this investigation. However, any opinions expressed herein are those of the authors and do not necessarily reflect the views of the NSF, NBPTS, or ETS. The authors are grateful to Douglas Corey and Hala Ghousseini for their assistance with some of the data coding in the study reported herein.

This paper was presented at the 2002 annual conference of the American Educational Research Association, New Orleans, LA, April 2002.
Documents such as the *Curriculum and Evaluation Standards for School Mathematics* (NCTM, 1989) and *Principles and Standards for School Mathematics* (NCTM, 2000) argue that it is both educationally possible and socially necessary to have ambitious mathematics learning goals for all students. At the same time, evidence from the Third International Mathematics and Science Study (TIMSS) suggests that American students learn not only far less mathematics than is desired in absolute terms but also far less than is needed in relative terms, in comparison to students in many other nations in the world (Beaton et al., 1996; Schmidt et al., 1999). In response, a number of initiatives have been proposed by educators and policy professionals to raise mathematics achievement for all students in the U.S. Many of these initiatives have focused on enhancing the quality of mathematics teachers and teaching. In fact, there is widespread agreement (cf. National Commission on Teaching and America’s Future, 1996; U.S. Department of Education, 2000)—even among those who find themselves at odds about the goals of school mathematics in the so-called Math Wars—that it will be impossible to attain high standards for student performance, however they are defined, unless efforts are made to increase the prevalence of high quality teaching.

In light of the growing interest in the quality of teachers and teaching in the U.S., many educators and policy makers have begun to pay more attention to the certification process offered by the National Board for Professional Teaching Standards (NBPTS). The NBPTS was established in 1987 as a nonprofit, nonpartisan organization that promotes the recognition of “highly accomplished” teaching practice. Under the guidance
of NBPTS, a voluntary, national system was established to certify accomplished practice in a number of fields. Except for “generalist” certifications, each field is defined by content area (e.g., mathematics) and students’ development level (e.g., Early Adolescence, ages 11-15). The NBPTS certification process involves both the specification of standards for professional practice and the completion of an assessment of the extent to which experienced teachers meet these standards.

The NBPTS identifies and recognizes teachers through a complex assessment system in which teacher candidates demonstrate knowledge and professional practice of many kinds. The NBPTS assessment in the area of Early Adolescence/Mathematics (EA/M), for example, consists of two parts: in one, teachers complete an on-demand, test-center-administered set of exercises to evaluate certain aspects of their content and pedagogical content knowledge; in the other, candidates submit a portfolio that includes contextualized samples of their teaching practice and reflections on their work. The portfolio component of the assessment consists of six entries, of which four are classroom–based entries. In these, two (Developing Mathematical Understanding and Assessing Mathematical Understanding) rely on classroom artifacts, samples of student work, and teachers’ reflective narratives to illustrate teaching practice and two (Engaging a Whole Class in Mathematical Discussions and Engaging Small Groups in Mathematical Interactions) rely on videotapes and accompanying artifacts and reflective commentary. The two portfolio entries not based on work inside the classroom pertain to teachers’ participation in professional activity and their outreach to families and local communities.

This exploratory study was undertaken in response to a perceived need for more information about the data collected in the NBPTS certification process. Despite
widespread support for the NBPTS efforts among education professionals and policymakers, its certification process has remained largely underexamined. Although technical analyses of the reliability and some aspects of the validity have been conducted (e.g., Jaeger & Bond, 2000), many questions remain. For example, little is known about the nature and character of the instructional and assessment practices of this select group of teachers. In what ways do these portfolios help to answer the question, What is “highly accomplished” mathematics teaching? To what extent do they reflect contemporary ideas about “best practice” in mathematics teaching? In what ways do the instructional and assessment practices of teachers who obtain NBPTS certification differ from those who do not? To what extent do the portfolio submissions for the NBPTS certification process give evidence of teaching that deviates from the portrait of typical practice available from other sources?

Because the NBPTS process attracts a self-selected sample of teachers, each of whom has an opportunity to select a few samples of teaching and assessment performance from across a year of work, the data available for inspection in this study differ substantially from data available from other large-scale studies of mathematics teaching/assessment practice. Unlike the teacher questionnaire data collected by NAEP and by TIMSS, for example, which portray normative teaching practice via teacher self-reports, the NBPTS data combine teacher self-reports (narrative descriptions of teaching practice) with physical records (video clips, instructional and assessment activities, and samples of student work) of actual classroom practice. Furthermore, in contrast to the data collected in the TIMSS and TIMSS-R video studies, the NBPTS portfolio submissions are intended to represent what the teacher applicants might be more likely to
characterize as their “best” practice rather than their “typical” practice. Thus, the NBPTS portfolio submissions are a strategic site for investigation into mathematics teaching/assessment practice in the middle grades.

The portfolio submissions of applicants for NBPTS certification provide an unprecedented glimpse at the instructional and assessment practices of a select group of American teachers. They also afford an opportunity to address a question that is increasingly part of public and professional debates about education: What is the nature of highly accomplished mathematics teaching? For that reason we undertook the exploratory investigation reported here.

Goals

One goal of this study was to characterize the nature and quality of samples of mathematics instruction and assessment submitted by middle school teachers who applied to the NBPTS for EA/M certification. A second goal was to contrast the nature and quality of the portfolio entries submitted by teachers who were granted NBPTS certification to those of the teachers who did not obtain certification. To accomplish the first goal we selected a random sample of applicants for NBPTS EA/M certification, examined two portfolio entries submitted by these teachers, and characterized selected mathematical and pedagogical features of the portfolio entries. To accomplish the second goal we contrasted the mathematical and pedagogical features of portfolio entries submitted by applicants who obtained NBPTS certification with those who did not.

Because the NBPTS portfolio process affords an opportunity for teachers to submit examples of their best practice, we expected that these portfolio submissions would
exhibit mathematical and pedagogical features that deviate from “typical” mathematics teaching practice in the middle grades. In particular, we expected that the portfolio submissions of teachers desiring NBPTS certification would contain activities that were mathematically demanding, and we further expected to see that teachers obtaining NBPTS certification would be more likely to submit high-demand activities than teachers who did not obtain certification. Similarly, we expected that the portfolio submissions of teachers desiring NBPTS certification would contain pedagogically adventurous samples of teaching, and we further expected to see that teachers obtaining NBPTS certification would be more likely to submit pedagogically rich samples than teachers who did not obtain certification.

Method

As part of the NBPTS process, applicants agree that their submissions can be examined for research purposes. A subset of the available data was used in this study.

Sample

We obtained test center and portfolio exercise score data for all candidates who applied for NBPTS certification during the 1998-99 academic year (n = 250). From this set of 250 applicants a random sample of candidates (n = 32) was selected for further analysis of a subset of their portfolio entries. Our random sample included 13 individuals who obtained NBPTS certification and 19 who did not; the ratio of successful to unsuccessful applicants in our sample was approximately that found in the entire population of EA/M applicants in 1998-99.
Data

We obtained copies of two of the portfolio entries submitted by the 32 individuals in our random sample of candidates for NBPTS certification. We collected the two portfolio entries that contained textual (rather than video) samples of instructional practice — Developing Mathematical Understanding (DU) and Assessing Mathematical Understanding (AU).

The two entries are each distinct, yet they share some common characteristics. For both entries, candidates are told to represent examples of their “best practice” and present “clear, consistent and convincing evidence” that they are able to build conceptual understanding using the activity in their classroom. Also, for both entries, candidates are instructed to use the same general format and include common elements: a written description of the instructional context (e.g., grade, subject, class characteristics); a written description of teacher planning (e.g., substantive math idea, goals for instructional sequence, challenges inherent in teaching these activities); analysis of student responses (actual student work samples for these specific students are appended to the entry); and candidate’s reflections on the outcomes of each instruction or assessment process as a whole.

Beyond these similarities, there are also some distinctions between the two entries. For the DU entries teachers are asked to select two activities for which they describe and exemplify their instructional approaches to developing students’ conceptual understanding of a substantive idea in mathematics. The two distinct learning experiences can be consecutive or spread apart in time; however, both should be focused on the same mathematical idea. The candidates are instructed to select activities in which students are
engaged in thinking and reasoning mathematically (e.g. interactive demonstrations, long
term projects, journal assignments, problem solving); in particular, it is emphasized that
they are to not select activities that focus on rote learning (e.g., students’ memorizing
procedures).

In the AU entries the instructional sequence around which teachers develop their
assessments must be one in which students are engaged in “thinking and reasoning
mathematically and building conceptual understanding”; they are again told not to focus
on rote learning. For the AU entry, candidates submit an assessment that describes and
exemplifies an approach that supports and promotes the learning goals and enhances
instruction. Candidates select one assessment for which they describe, analyze and
evaluate their students’ understanding of a chosen mathematical idea.

Data Analysis

Our examination of the NBPTS data consisted of quantitative and qualitative
analyses of the two portfolio entries for the random sample of 32 applicants. To
accomplish the first goal of this study—characterizing the nature and quality of
mathematics teaching in the portfolio entries—we systematically examined the two
portfolio entries along two distinct dimensions: (1) mathematical features, and (2)
pedagogical features. The mathematical features of interest were the topical focus (e.g.,
algebra, number) and the presence (or absence) of mathematically challenging or
cognitively demanding work for students. The pedagogical features included several
different aspects of the organization and enactment of instruction or assessment in the
classroom that have been widely advocated in recent years (e.g., group work, use of
technology). Taken together, these two dimensions provide information about what
Mathematics learning opportunities teachers provide in their classrooms and how these opportunities are provided to students. To accomplish the second goal of this study, we contrasted the mathematical and pedagogical features of portfolio entries submitted by applicants who obtained NBPTS certification with those who did not. Further details about the coding and analysis procedures for each aspect of the coding are provided as the results are presented in subsequent sections of this paper.

Results

In this section we present the major findings of our analysis of the portfolio entries. First, we present the results for the analysis of mathematical features. Next, we present the results for the analysis of pedagogical features. Finally, we provide the findings of our analysis of similarities and differences between the mathematical and pedagogical features in portfolio entries submitted by applicants who obtained NBPTS EA/M certification and in the entries of those teachers who did not obtain certification.

Mathematical Features of NBPTS Portfolio Submissions

This section presents the findings of our analysis of the mathematical characteristics of the activities in the DU and AU entries submitted by NBPTS candidates, with a particular focus on the mathematical/cognitive demands of the activities.

Mathematical topics. Mathematics teaching in the middle grades has long been criticized for excessive attention to number. In response to this preoccupation with number, the NCTM Standards (1989, 2000) suggest the importance of also treating topics in algebra, geometry, measurement, and data analysis in the middle grades. Algebra has received particular emphasis in recent years, as schools have more frequently offered a
year-long algebra course to students in grades 7 or 8. Therefore, in our analysis of the portfolio entries, we were interested in determining the mathematics topic area treated in the submissions.

Each activity was coded with respect to the mathematical topic under consideration. The five topic categories used by NAEP were used in this coding: Number and Operations; Algebra and Functions; Measurement; Geometry; and Data Analysis, Statistics and Probability (NAEP, 1988). Each of the three activities in the two portfolio entries (two activities in each DU entry and one activity on each AU entry) was assigned one or more of these topical designations based on the judgement of two raters who examined the nature of the activity. There was near unanimity in this coding, with a few disagreements arising only when multiple designations were assigned.

Table 1 gives the percent of AU and DU entries that treated topics in each of the categories. In the AU entries, 27 of the 32 activities were assigned to a single topic category. The 5 AU activities that spanned multiple topics all involved measurement in combination with algebra, geometry, or both. AU activities were about twice as likely to treat topics in algebra than any other single topic area. Number and operations, geometry, and data analysis were approximately equally represented across the activities. In the DU entries, 54 of the 64 activities were assigned to a single category. Among the 10 DU activities that spanned multiple topics, 8 involved measurement in combination with other areas, usually algebra, geometry, or both, but sometimes with Number or Data Analysis. DU activities were approximately equally distributed across four of the five topic areas, with Measurement being the exceptional topic that was infrequently the topical focus of a submitted DU activity.
Combining these results, we see that the submitted activities were more than five times as likely to involve a single topic area as to involve multiple topics. Measurement was the topic least likely to be the singular topical focus of an activity, but it was the most likely to be found in combination with other topics. Activities were approximately equally distributed across the other four mathematical topic areas, with Algebra being favored in AU submissions but not in DU submissions and geometry favored in DU submissions but not in AU submissions.

Mathematical demands. According to the *Professional Standards for Teaching Mathematics* (NCTM, 1991), in order for teachers to promote their students’ learning of worthwhile mathematics, teachers need to select “mathematical tasks that engage students’ interests and intellect” (p. 1). Such tasks, when implemented well in the classroom, can help develop students’ understanding, maintain their curiosity, and invite them to speculate and communicate with others about mathematical ideas. Research suggests, however, that this vision of mathematics teaching is far from commonplace in elementary and middle grades mathematics classrooms. Several research studies have found that daily mathematics instruction at these grade levels more typically involves teachers and students engaging in less intellectually challenging activities, such as recalling facts and applying well-rehearsed procedures to answer simple questions (Porter, 1989; Stake & Easley, 1978; Stigler & Hiebert, 1997; Stodolsky, 1988). Moreover, other research has shown that considerable pedagogical skill is needed to use cognitively demanding tasks well in mathematics classrooms. In particular, it is often
difficult for teachers to enact the tasks without reducing the very complexity and intellectual challenge that makes them worthwhile (Stein, Grover, & Henningsen, 1996).

In our analysis of the NBPTS portfolio entries we were interested in determining the extent to which the activities proposed by the teachers seeking NBPTS certification constituted worthwhile, high-demand mathematical activities and the extent to which the “highly accomplished” teachers who obtained NBPTS certification were more likely to employ such tasks than those who did not obtain certification. Thus we developed a coding system to help us determine the mathematical and cognitive demands of the activities submitted by the teachers, after which we used the results of the coding to characterize the frequency of cognitively demanding activities in the portfolio submissions.

Coding for mathematical demands. Our process of coding for mathematical demands incorporated aspects of both “top-down” and “bottom-up” approaches to data coding. In top-down approaches, one typically uses categories that are determined *a priori*. In contrast, bottom-up approaches typically involve allowing the categories to emerge from the data.

We began by examining several frameworks that have been used to distinguish among different levels of demands in mathematical tasks. Some of the frameworks we considered are drawn from the assessment literature (e.g., Beaton et al., 1996; Silver & Kenney, 2000); others were drawn from analyses of instruction (Stein, Smith, Henningsen, & Silver, 2000) or student proficiency (Kilpatrick, Swafford, & Findell, 2001). Although none of these frameworks was judged completely appropriate for our needs, the categories, layers of complexity, and descriptions associated with these
frameworks provided us with many examples and helped us organize our thinking about the demands exhibited in the activities.

The next phase of work involved two members of the research team examining the 32 AU activities and classifying each one independently using a dichotomous (high/low) rating scale to distinguish between those activities that were judged to be highly cognitively demanding tasks and those that were judged to low in cognitive demand. Because we were interested in the actual content of the activities, rather than what teachers wrote about their teaching more generally, this analysis focused on the actual activities proposed by the teachers and the associated student work samples. When it was deemed necessary to understand an activity, a teacher’s description of instructional context was also considered. After each activity was coded independently, the two raters met to compare ratings and discuss the rationale for each classification. Agreement was achieved for about 70% of the AU activities on this first pass rating. All instances of disagreement were discussed, and a consensus rating was derived.

Based on this experience, the two raters developed a list of criteria and characteristics that they found useful to distinguish the AU activities designated as high-demand from those designated as low-demand. This scheme was discussed and refined as needed to reach consensus. Then this list was used by each of the individuals to examine and classify the 64 DU activities. As before, each activity was classified by each person working independently to distinguish between those activities that were judged to be high-demand tasks and those judged to be low-demand tasks. Each rater gave a rationale for every classification and noted whether the list of characteristics was useful in making the judgment; they also identified emergent criteria or characteristics needed to enhance
the list initially derived from the rating of the AU activities. The two raters were able to use the preliminary list of criteria and characteristics for the DU entries, and they achieved agreement on nearly 80%.

The framework that emerged from this coding of the AU and DU entries is shown in Table 2. The application of these criteria required nuanced judgment on the part of the raters, and the classifications were sometimes difficult to make. Activities typically contained many parts, and it was difficult to decide how to weigh the more demanding and less demanding aspects of an activity to derive an overall classification. In general, the raters tried to apply the criteria liberally. That is, if some part of an activity exhibited high-demand characteristics, it was generally classified as highly demanding, even if some other parts of the activity did not exhibit high-demand characteristics. Another feature that required special judgment by the raters was the topic treated in the task at a particular grade level. For example, a task requiring application of basic knowledge about place value was less likely to be classified as highly demanding in grade 6 than a task involving a more advanced topic, such as trigonometry. Finally, the raters tried to ignore features of an activity (such as collecting data, writing a letter related to a mathematical task) that might increase performance complexity but which seemed more related to non-mathematical or extracurricular features than to mathematical and cognitive demands. Therefore, tasks that called for complex performances but required only routine mathematics tended to be classified as low-demand activities.

Insert Table 2 about here

To illustrate how these criteria were applied to the AU and DU tasks, two examples of activities classified as high demand and two classified as low demand are provided in Table 3. A rationale provided by a rater for the classification accompanies each example to illustrate how the criteria in Table 2 were applied in this process.

Insert Table 3 about here

Findings. Each of the 32 AU portfolio entries contained one activity; each of the 32 DU entries contained two activities. Each activity was coded independently. Thus, we coded a total of 96 activities.

Overall, we judged 38 percent of the AU activities and 30 percent of the DU activities to be tasks that had at least some high demand characteristics. That is, about one of every three activities in the AU and DU portfolio submissions had some part that exhibited the high-demand characteristics shown in Table 2. We next examined how the high-demand activities were distributed across mathematics content topics.

Table 4 presents the distribution of high-demand and low-demand activities among the five topic focus areas. This count was complicated for activities that were judged to have more than one topic focus. To handle such cases, we counted the activity for each topic area as a fraction depending upon the number of topic areas (e.g., if two topic areas were identified, then each would receive 0.5 in the tally).
Several observations are worth noting about the findings presented in Table 4. Combining across the two entries, there was no topic area associated more with high-demand activities than with low-demand activities. But the observation of cognitively demanding tasks varied across topic areas. Activities that treated topics in Number and Operations were six and one-half times as likely to be low-demand than high-demand activities; whereas, activities that treated topics in Measurement and Data Analysis were only about one and one-half times as likely to be low-demand than high-demand. Activities that treated topics in Geometry were about twice as likely to be low-demand than high-demand activities, and activities that treated topics in Algebra were almost twice as likely to be low-demand than high-demand activities. In general, the ratios of low-demand to high-demand activities for the topic areas are smaller for the AU entries than for the DU entries, with Geometry being the lone exception. That is, teachers in our sample were somewhat more likely to use cognitively demanding tasks in assessment to evaluate student understanding than they were to use such tasks in instruction to develop understanding.

In addition to examining variation in cognitive demand across topics, we also examined variation across teachers. Not all teachers included high-demand tasks in their portfolio entries. In fact, the high-demand tasks were submitted by about one-half of the teachers in our sample: 53 percent of the teachers in our sample submitted one or more cognitively demanding task, and 47 percent submitted only low-demand tasks. Some of
the teachers submitted only one cognitively demanding task, but others submitted more than one. About one-third of the total sample submitted two or three cognitively demanding tasks.

Pedagogical Features of NBPTS Portfolio Submissions

Mathematics classrooms for students in the upper elementary school and middle grades have been characterized in research studies as places in which students often work alone and in silence, with little or no access to each other or to suitable tools, on exercises presented through textbooks or worksheets that make little or connection to either other subjects taught in school or the world outside of school, to produce answers quickly and efficiently without much attention to explanation, justification, or the development of meaning (e.g., Stodolsky, 1988; Stigler & Hiebert, 1999). In response to this characterization the NCTM Standards (1989, 2000) have suggested the potential instructional value of fostering communication and interaction among students in the mathematics classroom, through the use of complex tasks that are suitable for cooperative group work and that provide settings in which students need to explain and justify their solutions. The NCTM Standards also suggest the importance of connecting work done in the mathematics classroom to other subjects and to the world outside school. Moreover, the NCTM Standards also encourage the use of physical models and technological tools both to engage students with “hands on” learning activities and to support their developing conceptual understanding. Because these suggestions for pedagogical innovation have received considerable attention in the past decade, we hypothesized that they would be evident in the portfolios of applicants for NBPTS EA/M certification. Therefore, in our analysis of the portfolio entries, we looked for evidence of the
following pedagogical features: setting tasks in contexts outside the domain of mathematics itself, using hands-on materials and activities, using cooperative grouping, setting tasks in interdisciplinary contexts, using technology (especially calculators and computers), and requiring students to provide explanations of their thinking and reasoning.

Coding for pedagogical features. Each portfolio entry was examined for evidence that each pedagogical feature was employed. A portfolio entry was considered to give evidence of an actualized use of a feature when the teacher’s description of the instructional context clearly indicated the use of the feature in connection with the submitted activity. In some cases, the teacher’s narrative description was not explicit about the use of a pedagogical feature in connection with a submitted activity, but the narrative did suggest that the feature *might* have been used. We noted these instances and coded them as instances of potential uses rather than actualized uses of a feature. Because a teacher’s explanation of the instructional context was not generally activity-specific for the two activities in the DU entry, we decided to treat the entire DU entry, rather than each activity, as the unit of analysis for the coding of pedagogical features. Thus, there were 64 items coded in this analysis – 32 AU entries and 32 DU entries.

Initial rater training consisted of having one member of the research team and two graduate assistants independently examine 8 of the 32 activities in the AU entries. For each entry, the rater judged whether the pedagogical feature was actualized (A), potential (P), or not evident, and generated a written rationale – typically, verbatim excerpts from the portfolio entries—as evidence that the selected features were represented as coded. Raters were nearly unanimous in their A and P classifications, though they sometimes
chose different aspects of the portfolio entry to support a common classification. The only source of classification disagreement related to distinguishing interdisciplinary work (i.e., about different school subjects) from contexts other than mathematics (i.e., “real world” applications) in some settings (e.g., athletics, home economics). Such disagreements were resolved through discussion to reach consensus. The working definitions were refined accordingly. Table 5 gives the set of judgment criteria that emerged from this initial coding.

Insert Table 5 about here

Given the high level of agreement, the remaining AU entries and all DU entries were each coded by only one rater, but a reliability check was conducted for 8 randomly selected entries (2 in AU, and 6 in DU). For these cases, the second rater agreed with the first rater’s A and P classifications in all instances. To illustrate how the criteria were applied to the AU and DU tasks, excerpts of entries that were associated with the coding of actualized pedagogical features are provided in Table 6.

Insert Table 6 about here

Findings. As can be seen in Table 7, pedagogical features were observed in the portfolio entries with varying frequency. The pedagogical features found most frequently in the portfolio entries were the use of “hands on” materials and attention to applications of mathematics to contexts outside of mathematics itself. These features were evident in a
little more than half of the AU entries. They were even more prevalent in the activities submitted in DU entries, with nearly 9 of every 10 DU entries containing an activity involving an application of mathematics to a context outside of mathematics and about 8 of every 10 DU entries containing a “hands on” activity. The least frequently observed pedagogical feature was the requirement that students provide explanations or justifications for their procedures or solutions. Only about 1 of every 4 AU entries contained an activity that exhibited this feature, and only about 1 in 5 of the DU entries had an activity with this feature.

As Table 7 also indicates, the frequency of occurrence varied between AU and DU entries. Except for the requirement that students provide an explanation or justification for their procedure or solution, all other pedagogical features were more frequently found in the activities provided in DU portfolio entries than in the activities in AU entries. This general trend may suggest that teachers are more comfortable or more adept with using cooperative groups, “hands on” activities, and technology in teaching situations rather than in assessment situations. Teachers may be less likely to use applications and interdisciplinary activities in assessment than in teaching because they wish to avoid the negative effects on student performance of unfamiliar application settings. The AU entries were more likely than the DU entries to contain activities that required students to provide an explanation, which may be due to the fact that assessment tasks are likely
places to ask for such explanations. Nevertheless, the low frequency of this feature, even in the AU entries, is surprising.

The variation noted between AU and DU entries led us to consider how consistent teachers were in their deployment of these features. For each of the six pedagogical features, Table 8 gives the percent of teachers for whom at least one portfolio entry contained clear evidence of actual use of the feature.

As might be expected from the findings reported in Table 7, the data in Table 8 show that almost all of the teachers in this sample of NBPTS applicants used outside applications and “hands on” activities in the portfolio entries. Approximately two of every three teachers used cooperative learning, and nearly that many used technology. About half of the teachers in the sample used interdisciplinary activities, but less than half used tasks that required students to give explanations.

Putting these findings in perspective. To interpret the extent to which the findings reported in Table 8 suggest “pedagogically adventurous” instructional practice on the part of NBPTS candidates, we compared our findings to data found in the Report of the 2000 National Survey of Science and Mathematics Teachers (Weiss, et al., 2001). The Weiss et al. report is based on self-reports from a nationally representative sample of about 6000 teachers of mathematics in grades 1-12 in about 1200 schools. Weiss et al. report their findings for teachers in three grade-level clusters, one of which is grades 5-8, and this is the cluster of teachers that corresponds to age/grade specialization of applicants to the
NBPTS for EA/M certification. Before providing our comparison of points of agreement and disagreement between the two sets of findings, it is important to note that these data sources are different in many ways – including the nature of the data, the circumstances under which the data were collected, and the data analysis procedures employed. Therefore, these comparisons should be considered suggestive rather than conclusive.

In general, teachers in the NBPTS sample exhibited different use of the pedagogical features than would have been expected from the national survey data. Although the direction of the difference was not the same for all features, we found that NBPTS teachers tended to be fairly adventurous pedagogically, when compared to the picture of normative practice painted by the Weiss et al. report. Our sample of NBPTS applicants employed three features far more than expected, one feature at about the expected frequency, and only one feature far less than expected.¹

For three pedagogical features—using technology, using outside applications, and using “hands on” activities—teachers in the NBPTS sample exhibited greater use of the pedagogical strategies than would have been expected based on the national survey data. Regarding the use of technology—the percent of teachers in our sample who actually used the feature was similar to the percent of teachers in the national sample who reported employing this pedagogical feature at least once each week. In the Weiss et al.

¹ A comparison is difficult to make for the sixth pedagogical feature – using interdisciplinary activity—because Weiss et al. (2001) indicate only the percent of teachers in their sample who reported daily use of this strategy and they do not indicate the percent of teachers in their sample who reported weekly use. Although only 17 percent of the teachers in their sample reported daily use of interdisciplinary activity—which is much lower than the 50 percent of the teachers in our NBPTS sample who included an interdisciplinary activity in at least one portfolio entry—we think a reasonable comparison requires including the percent of teachers in the national sample who reported weekly use of this strategy.
(2001) survey 49 percent of grade 5-8 teachers reported using calculators or computers for developing concepts and skills. In Table 8 we see that 59 percent of the teachers in our sample actually used technology in either the AU or DU portfolio entries, or in both.

A similar trend was found for the use of outside mathematics contexts and for the use of concrete materials and “hands on” activities. Weiss et al. indicated that 57 percent of grade 5-8 teachers reported using concrete materials in their lessons, and 71 percent of these teachers reported having students use mathematical concepts to interpret and solve applied problems, at least once each week. In contrast, 84 percent of the teachers in our sample actually included at least one “hands on” activity in their portfolio entries, and 91 percent of the teachers actually used contexts outside mathematics as a setting for student work in at least one of the two portfolio entries we examined.

In these latter cases, the observed difference may be at least partially attributable to somewhat different pedagogical features being considered. The term “concrete materials,” which was used in the Weiss et al. survey, may provoke a narrower interpretation than the term “hands on” activities, which we used in our analysis of the NBPTS portfolios. For example, it is not certain that a teacher would consider cereal boxes to be concrete materials for the purposes of responding to a survey question, but we did consider a task involving the analysis of data from a variety of cereal boxes to be an instance of a “hands on” activity. Some similar phenomenon may be affecting the findings for the use of contexts outside mathematics.

For another pedagogical feature, cooperative groups, the percent of teachers in our NBPTS sample who exhibited use of the feature in their portfolio entries was lower than the percent of teachers in grades 5-8 in the national sample who reported employing this
pedagogical feature at least once each week. In the Weiss et al. (2001) survey 83 percent of grade 5-8 teachers reported using cooperative groups at least once each week. We found that only 66 percent of the teachers in our sample documented the actual use of cooperative groups in at least one of the two entries we examined. But if we include the additional 16 percent of the teachers in our sample who wrote in their portfolio narratives about using cooperative groups in their teaching, then the totals in the two groups are very similar.

There was only one pedagogical feature for which NBPTS teachers were markedly less “pedagogically adventurous” than would be expected from the national survey results. NBPTS teachers in our sample were far less likely to require students to provide explanations than would have been predicted from the responses given by the grades 5-8 teachers in the national sample. In the Weiss et al. (2001) survey, 56 percent of the grade 5-8 teachers indicated that they required such explanations every day or almost every day in their classroom. Although Weiss et al. do not report the percent of teachers who reported requiring student explanations at least once each week, the percent reporting daily use already exceeds the 44 percent of our NBPTS sample who used, or at least wrote about using, tasks that required students to give explanations (see Table 8). Even if we include an additional 3 percent of the teachers in our NBPTS sample who wrote in their portfolio narratives about requiring student explanations in their teaching, the totals in the two groups remain quite different. Moreover, Weiss et al. reported that 71 percent of the grade 5-8 mathematics teachers indicated that they assessed students at least monthly using tests that require them to provide descriptions or explanations for open-
ended questions. This is more than double the 28 percent of our NBPTS sample who submitted an AU portfolio activity that required students to provide an explanation.

Relating Mathematical and Pedagogical Features of the Portfolio Entries

Previous research has shown that high-demand tasks are challenging for mathematics teachers to use well with students in the middle grades, but they can be successfully enacted when teachers employ certain pedagogical strategies effectively (Henningsen & Stein, 1997; Stein, et al, 1996; Stein, et al. 2000). Moreover, some observers of mathematics reform efforts in the past decade (e.g., Cohen, 1990; Ferrini-Mundy & Schram, 1997) have noted that even when reform ideas are evident in the rhetoric and actions of teachers and others in schools and classrooms, these ideas are often implemented in superficial ways. Similarly, Stigler and Hiebert (1999) reported that most of the U.S. grade 8 teachers in the TIMSS Video Analysis Study reported an awareness of ideas espoused in the NCTM Standards, and they expressed a belief that they were implementing these ideas in their teaching; yet, the analysis of their teaching detected almost no evidence of any real implementation of these ideas. Thus, we undertook an analysis to detect the extent to which teachers in our sample of applicants for NBPTS EA/M certification used pedagogical strategies to support students’ engagement with high-demand mathematics tasks. In particular, we were interested in which pedagogical features, if any, were strongly associated with teachers’ use of high-demand tasks.

For the AU and DU portfolio entries, we created 2-by-2 contingency tables, crossing cognitive demand (high or low) with pedagogical feature (present or absent). For each pedagogical feature, each contingency table displayed the number of teachers in our
sample who submitted entries that were coded with the corresponding pair of characteristics. For this analysis, we considered pedagogical features to be present only when they were coded as actualized features. For the DU entries, we collapsed the cognitive demand coding for the two submitted activities, and we considered an entry to be high-demand if it contained at least one activity coded as high-demand.

We analyzed the data in these tables using Chi-square tests, and we found no evidence that any of the pedagogical features were strongly associated with the use of cognitively demanding tasks in either the AU entries or the DU entries. Table 9 provides a summary that collapses all the 2-by-2 tables, providing the information that appeared in each small table in the column corresponding to the pedagogical feature being present.

Of the 12 chi-square analyses conducted, only one indicated a significant relationship between cognitive demand and the use of a pedagogical feature—the use of interdisciplinary activities in AU entries \(\chi^2 (32, 1) = 6.400, p < .05 \). In this case, the relationship was negative. That is, interdisciplinary activities submitted in AU portfolio entries were significantly more likely to be low demand activities than to be high-demand activities. No significant positive relationships were indicated.

The findings of our analysis of the relationship between cognitive demand and pedagogical features suggests that, although the teachers in our sample were using many innovative pedagogical strategies, the teachers were not using them in any systematic way to support students’ engagement with cognitively demanding mathematics tasks. In
this way, the teachers in our NBPTS sample are probably not very different from other teachers of mathematics in grades 5-8.

A partial explanation for the apparent disconnection between pedagogy and mathematical demand may be found in the diverse array of instructional goals and motivations that were mentioned by teachers in the description sections (e.g., *instructional context, planning*) of their AU and DU portfolio entries. Some of the goals expressed by teachers related to mathematical content (e.g., understanding ratios, solving equations, organizing and interpreting data). Other teacher goals related more to mathematical processes as outlined in the *Principles and Standards for School Mathematics* (NCTM, 2000) (e.g., developing problem-solving strategies, providing opportunities for communication, connecting mathematics to the real world). Yet, perhaps most interesting was the substantial number of goals related to non-mathematical issues confronting middle grades math teachers (e.g., building students’ self-confidence in mathematics, addressing students’ learning styles, preparing students for standardized test and future courses). In general, we found that teachers stated many goals for their teaching, some exceeding 50 in number for any given entry. In addition to the number of goals, the varied, and sometimes possibly competing, content of those goals may play a role in teachers’ inability to implement innovative pedagogical strategies in the service of cognitively demanding mathematical tasks.

Contrasting the Mathematical and Pedagogical Features of Portfolio Entries Submitted by Certified and Non-certified Teachers

Our random sample included 13 individuals who obtained NBPTS certification and 19 who did not. One major goal of this study was to contrast the nature and quality of the
portfolio entries submitted by applicants who obtained NBPTS certification with those who did not. Toward that end we contrasted the mathematical and pedagogical features of the entries submitted by these two subsets of the total sample of NBPTS applicants. Before presenting the findings, we first describe how decisions are made to award NBPTS certification to applicants.

Certification decisions are based on the total scaled score candidates earn on the overall assessment. The total score is a weighted sum of scores on 10 exercises — six portfolio entries (Developing mathematical understanding, Assessing mathematical understanding, Engaging a whole class in mathematical discussion [video entry], Engaging small groups in mathematical interactions [video entry], Collaboration in the professional community, and Outreach to families and the community) and four test center exercises — (Content knowledge, Analysis of student work, Using manipulative materials to develop understanding, and Using technology to develop understanding). All the exercise scores are reported on a scale that ranges from 0.75 to 4.25. Exercises are weighted because certain exercises were judged as being more important to the certification decision than others. The two portfolio entries considered in this study were among the four most heavily weighted entries in determining the total score.

To arrive at a total scaled score, each final exercise score is multiplied by its weight and the sum is taken to these 10 weighted exercise scores; a 12-point constant is added to ensure consistent reporting across certificates and administrations. The final value is then rounded to the nearest whole number. The performance standard for all NBPTS certificate fields is 275 points (including the 12-point constant). To be awarded a
certificate of accomplished teaching practice, a candidate’s total scaled score must be
equal to or greater than 275 points.

Mathematical demands. As we noted earlier, about half of the teachers in our
sample submitted portfolio entries containing at least one mathematics activity coded as a
high-demand activity. Table 10 shows the distribution of NBPTS certified (and non-
certified) teachers who submitted (or did not submit) at least one high-demand activity.

| Insert Table 10 about here |

These data suggest a strong association between NBPTS certification and the
submission of cognitively demanding tasks. In particular, four of every five teachers who
submitted exclusively low-demand tasks in these two portfolio entries did not obtain
NBPTS certification. Similarly, very few teachers who obtained NBPTS certification
submitted exclusively low-demand tasks in the two portfolio entries we examined. Three
of every four teachers who obtained NBPTS certification submitted at least one high-
demand task in the two portfolio entries we examined. A chi-square analysis indicated a
statistically significant association ($\chi^2 (32, 1) = 4.98; p < .05$).

Pedagogical features. Because the use of pedagogical features in the submitted
portfolio entries also varied across teachers, we could examine the use of these features
by teachers who did (or did not) obtain NBPTS certification. Table 11 shows the
distribution of NBPTS certified (and non-certified) teachers who submitted (or did not
submit) at least one activity which contained each of the pedagogical features we
considered in the two portfolio entries we examined.
These data suggest a fairly weak association between NBPTS certification and the use of most of the pedagogical features we examined. Consider, for example, the use of hands-on activities, contexts outside mathematics, or small group activities. Each feature was evident in at least one portfolio entry submitted by a majority of teachers who were awarded NBPTS certification and in the entries submitted by a majority of teachers who were not awarded NBPTS certification, though each feature was somewhat more likely to be used by non-certified teachers. The pattern for the use of interdisciplinary activities was somewhat different because it was less widely used by teachers in the portfolio entries, but it was also slightly more likely to be used by non-certified teachers than by those who obtained NBPTS certification. A negative trend between use of a pedagogical feature and NBPTS certification was most evident for the pedagogical feature of requiring students to produce explanations. In this case, teachers who obtained NBPTS certification were about twice as likely not to ask for student explanations than to ask for them; non-certified teachers were about as likely to ask for explanations as not to ask for them. The strongest positive trend was found for the use of technology. About three of every four teachers who obtained NBPTS certification also employed technology in at least one of the two portfolio entries; non-certified teachers were about as likely to submit as to not submit an entry that used technology. Chi-square tests indicated that none of these relationships and trends was statistically significant.

Further contrasts of certified and non-certified teachers. We also used other methods to contrast the mathematical and pedagogical character of the portfolio
submissions of certified and non-certified teachers. For example, we conducted an analysis that removed the subset of the sample whose total NBPTS score was within an error band around the cut score of 275. Because the decision to award or deny NBPTS certification to these individuals whose scores are near the cut point are less certain than for the other teachers in the sample, we conducted this analysis to detect patterns that might be masked by potentially mis-classified individuals. Despite the reduced sample size, the results of this analysis generally confirmed the findings reported above, and no new significant relationships were identified.

Discussion

As we noted at the outset, national efforts to increase students’ mathematics learning depend to a great extent on the success of efforts designed to improve the quality of mathematics teaching. The NBPTS certification process represents an important contribution both to the definition and recognition of teaching quality. Because the portfolios that teachers assemble as part of the process of applying for NBPTS certification provide opportunities for them to display samples of their best practice, the entries comprise a rare database for the specification and analysis of teaching quality. These records of instructional practice afford an unprecedented glimpse at the work of teachers who are willing to submit themselves and samples of their work to a rigorous judgement process to determine if they qualify for designation as highly accomplished teachers.

In this exploratory study we analyzed samples of mathematics instruction and assessment submitted by a random sample of 32 teachers from the total set of 250 applicants for NBPTS EA/M certification in 1998-99. In our analysis we investigated the
portfolio entries to look for evidence of selected mathematical and pedagogical features that might be associated with high quality mathematics teaching. Because some of the applicants were awarded NBPTS certification and some were not, it was possible to contrast the mathematical and pedagogical features detected in the portfolio entries submitted by the two groups. Thus, we also contrasted the mathematical and pedagogical features of portfolio entries submitted by the 13 applicants who were awarded NBPTS certification with the 19 who were not.

Before discussing the findings of our exploratory investigation of the portfolio entries submitted by these teachers, it is worth noting some limitations. First, we examined the entries of only 32 teachers, so generalizations to the entire population of applicants for NBPTS EA/M certification should be made cautiously. However, a sample of about 13 percent is reasonable for such a study, given the intensive qualitative analysis required. Second, the corpus of data analyzed in this study was collected for a different purpose. Ours was a secondary analysis of portfolio entries that were structured to allow reliable scoring by trained raters to generate elements of a total score that could be used to decide which teachers should be awarded NBPTS certification and which should not. If one were to begin with questions regarding the mathematical and pedagogical features considered in this study, one might well design a different process of collecting and structuring the data. Nevertheless, the portfolio entries provide records of teachers’ instructional practice that they deem suitable as samples of their best practice. As such, they constitute a reasonable data set for this investigation.

The NBPTS submissions were well balanced with respect to the treatment of mathematics topics, but many were not particularly challenging. Contrary to expectations
based on some prior research on mathematics instruction in the upper elementary and middle grades (e.g., Porter, 1989; Stodolsky, 1988), we found the portfolio entries to be reasonably well balanced across mathematics topic areas—with activities frequently treating topics in geometry and data analysis as well as in the traditionally more heavily emphasized area of number and the currently heavily emphasized area of algebra. However, in line with prior research on mathematics teaching at this age and grade level (e.g., Stigler & Hiebert, 1999), we found that many of the mathematics tasks were not very demanding. Despite the fact that we applied a generous criterion to determine cognitive demand—if some part of an activity exhibited high-demand characteristics, it was classified as highly demanding, even if other parts of the activity did not exhibit high-demand characteristics—about half of the teachers in our sample failed to include in their portfolio entries even a single task that was judged to be cognitively demanding. If we applied a more stringent criterion—such as requiring that more than half of an activity had to be judged to be cognitively demanding—the number of portfolio entries containing high-demand tasks would have been reduced considerably.

Some of the activities submitted by teachers in our sample were quite demanding, and would likely have been so judged even if more stringent criteria were applied, yet a substantial portion of the teachers in our sample of applicants for NBPTS EA/M certification did not include any mathematically demanding tasks. This finding is especially surprising because these teachers were trying to exhibit their best practice. Nothing in the directions provided by the NBPTS for the assembly of portfolios, nor in the accompanying materials (such as the teaching standards themselves) appears to discourage the inclusion of cognitively demanding tasks. Thus, this finding suggests that
many of these teachers either do not use such tasks in their instruction (and hence they were unavailable for selection as portfolio entries), or they do not consider mathematical demand to be a characteristic of highly accomplished mathematics teaching (and hence they chose not to display it in their instructional samples).

The instructional practice evident in the NBPTS submissions was more pedagogically adventurous than it was cognitively demanding. More than 80 percent of the teachers included an activity involving “hands on” activities or contexts outside of mathematics itself. For both of these pedagogical features, and also for the use of technology, our sample of NBPTS applicants employed the strategies more frequently than would have been predicted on the basis of the self-report data available from a national survey of mathematics teachers in grades 5-8. The lone pedagogical feature used less often than the national survey data suggested was requiring students to provide explanations.

Although we found that teachers used innovative pedagogical strategies in their classrooms, they did not do so in a way that was closely linked to supporting students’ encounters with challenging tasks. Even in our highly select sample of teachers who applied for NBPTS certification—thereby indicating that they thought of themselves as potentially highly accomplished teachers—we found little evidence innovative pedagogy was used to support students’ engagement with cognitively demanding tasks in the mathematics classroom in grades 5-8. In this respect, the findings of this exploratory investigation are consistent with some other research studies (e.g., Cohen, 1990; Ferrini-Mundy & Schram, 1997), and many anecdotes, suggesting that teachers may implement reform pedagogy in a superficial manner that does not realize their potential.
Our findings, based on the work of a self-selected group of teachers, suggest that the larger population of mathematics teachers in grades 5-8 is likely to need assistance in learning to use innovative pedagogical features effectively to support students’ engagement with challenge in the mathematics classroom. This set of findings seems especially important in light of evidence not only that teachers at this age and grade level find it difficult to enact cognitively challenging tasks in the mathematics classroom (Stein et al, 1996) but also that the consistent, effective use of cognitively demanding tasks in the mathematics classroom increases student achievement (Stein & Lane, 1996; Stein, Lane & Silver, 1996).

We found it especially surprising and concerning that requiring students to give explanations was the least used pedagogical strategy among those we examined. This is arguably the one strategy among the six we considered that can be most easily and directly linked to cognitively demanding activity in the classroom. The fact that NBPTS applicants, even those who were awarded NBPTS certification, used this pedagogical strategy infrequently and in a manner that was not associated with high-demand tasks suggests that mathematics teachers more broadly will need additional support to learn to use this particular pedagogical feature effectively.

One intriguing aspect of the apparent disconnection between pedagogical innovation and cognitively demanding mathematical tasks that merits further careful exploration is the array of goals and intentions expressed by the teachers in our sample as they described their planning and the instructional context of their portfolio entries. In general, we found that teachers stated many goals for their teaching. Although we did not report herein a careful, complete analysis of these goals, it was our impression that the
mathematical goals expressed by teachers were not highly specific, nor were they often tied to pedagogical strategies. On the other hand, it was our impression that the diverse set of goals related to non-mathematical issues confronting middle grades math teachers (e.g., building students’ self-confidence in mathematics, addressing students’ learning styles, preparing students for standardized test and future courses), though diffuse and often also stated quite generally, were more likely to be tied to pedagogical strategies. A careful analysis of the varied, and possibly competing, goals that teachers hold for their instructional activities may shed more light on how to assist teachers to employ innovative pedagogical strategies in the service of cognitively demanding mathematical tasks in the classroom.

Our analysis of these portfolio entries also suggests that teachers may need more opportunities to explain what they do and why they do it. Many of the teachers in our sample failed to articulate clearly their goals and approaches to mathematics teaching. The narrative portions of the portfolio entries were sometimes quite difficult to understand and interpret, as many teachers used educational jargon quite liberally and some moved across topics in a seemingly disconnected ramble. Thus, it seems that teachers might need and benefit from professional development experiences that assist them to become more adept at examining and reflecting on their instructional practice and then expressing in writing the results of their examination and reflection. The use of narrative and video cases and written reflections seem especially promising in this regard (e.g., Schifter, 1996; Stein, et al, 2000) because they can help teachers learn to use frameworks systematically to analyze and express key aspects of their practice.
Moving beyond the particulars of this investigation, we also see some broader implications of this study. In particular, our exploration can be viewed as an indirect examination of the validity of the NBPTS certification process. Moreover, our findings may have broader implications for studies that seek observation-based generalizations about mathematics teachers’ instructional practice.

Our investigation of the portfolio entries was not intended to be a validation study of the NBPTS certification process, and a replication involving a larger sample would be needed to make strong claims. Nevertheless, some of our findings do provide some validation of that process. In particular, the lack of correspondence between the awarding of NBPTS certification and the use of pedagogical features can be taken as evidence that the portfolio evaluation process is not heavily influenced by possibly superficial implementation of pedagogical innovation. And the positive association of low-demand mathematics tasks with non-certified teachers and high-demand mathematics tasks with certified teachers suggests that there is some reason to think that the instructional practice of those teachers awarded NBPTS certification is in fact “highly accomplished” in one mathematically important way that is not an explicit part of the NBPTS certification process.

These results from our study are generally supportive of the NBPTS process and outcomes, but a more complete investigation of the relationship would involve other analyses, such as the examination of portfolio entry scores in relation to our coding. Our preliminary examination of this relationship suggests some reasons to be concerned about the scoring of individual portfolio entries. For example, 17 DU portfolio entries contained two low-demand activities, yet 65 percent of these entries received “accomplished”
scores (a score 3 or greater) from the NBPTS assessors. Thus, our preliminary analysis suggests that the presence of low-demand tasks do not reliably predict a low assessor score on a particular entry, even though they appear to be related more generally to a low total score for the entire NBPTS process.

Several other extensions of this investigation also appear to be worth pursuing. For example, one could consider our analysis of mathematical and pedagogical features in these entries in relation to teachers’ performances on other exercises and entries deemed important, such as the video-based portfolio entries or the test center exercise that assesses mathematics content knowledge. Moreover, one would undoubtedly want to know how the features of instructional practice identified in our analysis of the portfolio entries are enacted more broadly in the instructional practice of NBPTS certified teachers throughout an entire year of instruction and how those features appear to influence and impact student learning.

Our analysis of cognitive demands in the mathematics tasks submitted by teachers in our sample indicated that the assessment (AU) entries were more balanced with respect to cognitive demands than were the teaching (DU) entries. That is, in all topic areas except geometry, the ratio of low-demand to high-demand tasks in AU entries was closer to one than in the DU entries (see Table 4). Large-scale research studies of teachers’ instructional practice, such as the TIMSS video analysis (Stigler & Hiebert, 1997), tend to focus exclusively on the teaching of classroom lessons rather than the assessment activities used by teachers. Thus, our findings suggest that studies that focus exclusively on teaching that corresponds more to the requirements of the DU entry than the AU entry may underestimate the extent to which cognitively demanding tasks are used with
students. Certainly, our findings suggest that more attention to teachers’ assessment practices could provide valuable information about their classroom instruction that would complement the kind of information available from surveys and studies of teaching practice itself.

At the end of this presentation we return full circle to a question we stated near the beginning: What is the nature of *highly accomplished* mathematics teaching? Our analysis of this sample of teacher portfolio entries has identified some features of instructional practice that appeared to be consistent with the conceptions of highly accomplished instructional practice held and enacted by some of the teacher applicants for NBPTS EA/M certification. Our analysis also identified some features that did not appear to be consistent with the ways in which these teachers thought about or conducted what they considered highly accomplished instruction. Much remains to be done in understanding the nature of such practice, useful ways to record and describe it, and effective means of supporting its development.
References

Table 1

Number of Activities Treating Single and Multiple Mathematical Topics by Type of Entry

<table>
<thead>
<tr>
<th>Mathematical Topic Categories</th>
<th>DU Entries</th>
<th>AU Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number and Operations</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Algebra and Functions</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Measurement</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Geometry</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis, Statistics, and Probability</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>27</td>
</tr>
<tr>
<td>Multiple Topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number & Data</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Measurement & Algebra</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Measurement & Geometry</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Number, Algebra, & Measurement</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Algebra, Measurement, & Geometry</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Algebra, Measurement, & Data</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>All Topics</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 2

Criteria for Coding High-Demand and Low-Demand Activities

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
</table>
| High | Tasks require students to explain, describe, justify, compare, or assess.
 | Tasks require students to make decisions and choices, to plan, or formulate questions or problems.
 | Tasks require students to be creative in some way (e.g., to apply a known procedure in a novel way).
 | Tasks require students to work with more than one form of representation in a meaningful way (e.g., to translate from one representation to another, interpreting meaning across two or more representations). |
| Low | Tasks require students to make exclusively routine applications of known procedures.
 | Tasks that are potentially demanding appear to be made routine because of a highly guided or constrained task structure (e.g., a complex task is subdivided into non-demanding subtasks; a potentially challenging task is made routine because a particular solution method is imposed by the teacher).
 | Task complexity or demand is targeted at non-challenging or non-mathematical issues (e.g., explaining, assessing and describing work is targeted at procedures rather than justification; required explanations are about non-mathematical aspects of a plan or solution). |
Table 3

Examples of Coding for High Demand and Low Demand Activities

<table>
<thead>
<tr>
<th>Level</th>
<th>Summary of the Activity</th>
<th>Coding with Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Teacher created activity that integrates probability, number and operation sense, geometry and measurement. Students have to design a dartboard that has four regions with given features (scores 100, 50, 25, and 10; probabilities of 10%, 20%, 30%, and 40% respectively; any shape; area between 1000 and 3000 cm²). They may assume that probability is proportional to the area of the region. They have to produce a scale drawing with dimensions and explain solutions in words (statement, procedure, and evaluation) (#9, AU)</td>
<td>The students had to devise a plan and consider several constraints to carry it out. Even though the calculations might be simple (find radius/dimensions from given areas, subtract areas for rings, set up proportions, and find area size based on probability) how to find a solution required creativity. Students’ narratives were clear, organized, and complete. Teacher mentions that the activity was a portfolio entry for problem solving. It is not clear how much time was dedicated to this activity.</td>
</tr>
<tr>
<td></td>
<td>Students had to design a miniature golf course, using at least four solids; they had to produce nets for each shape, showing dimensions, and an isometric drawing of the station. Students had to pass an inspection that looked for description of the station, nets, isometric drawing, and overall comments. (#3, DU1).</td>
<td>Students had the freedom to choose the solids and had to create a difficult course; they had many constraints to consider; producing the net involved required measures in both 3D and 2D spaces and coordinate them. Students had to plan carefully their work in order to make sure they get to a solution.</td>
</tr>
<tr>
<td>Low</td>
<td>Find Sale Price. Worksheet illustrating how to calculate the price of an item on sale. (#19, DU)</td>
<td>Students have to repeat step-by-step procedures modeled in the example provided.</td>
</tr>
<tr>
<td></td>
<td>Ten-problem quiz, without calculators or manipulative materials, though the latter were used in the instruction. No time limit. Includes questions about subtraction of integer numbers, manipulation of simple algebraic equations, and word problems involving subtraction of integer numbers (plane altitude and temperature), Short answers are required. It seems that students may work with a partner. (#7, AU)</td>
<td>The activity looks for knowledge of facts, most of them committed to memory.</td>
</tr>
</tbody>
</table>
Table 4

Number of High Demand and Low Demand Activities by Mathematical Topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>AU Entries</th>
<th>DU Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Number and Operations</td>
<td>5</td>
<td>1.2 a</td>
</tr>
<tr>
<td>Measurement</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Geometry</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>Algebra and Functions</td>
<td>6.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Data Analysis, Probability</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes: a. Activities that treated more than one topic were shared proportionally among all the contributing topics.
Table 5

Descriptions of Criteria for Coding Pedagogical Features

<table>
<thead>
<tr>
<th>Pedagogical Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use outside mathematical context</td>
<td>Tasks that involve real-world contexts, including students’ lives, interests, cultures, and personal identities.</td>
</tr>
<tr>
<td>Use hands-on activities</td>
<td>Tasks that involve materials used to create some object (e.g., a poster, a physical model) or to make or serve as concrete models of abstract notions (e.g., colored chips to illustrate operations with negative numbers).</td>
</tr>
<tr>
<td>Use cooperative grouping</td>
<td>Tasks that require that work be done with a partner or in a larger group of students.</td>
</tr>
<tr>
<td>Use interdisciplinary activities</td>
<td>Tasks that involve contexts taken from other subjects taught at school (e.g., science, social studies, English, or home economics).</td>
</tr>
<tr>
<td>Use technology</td>
<td>Tasks in which technological tools – such as calculators, computers, software (e.g., electronic sheets or word processors), and the Internet – are used.</td>
</tr>
<tr>
<td>Solicit explanations</td>
<td>Tasks that require students to make explicit their reasoning and thinking processes or to provide a rationale or justification for their solution or approach to a problem.</td>
</tr>
</tbody>
</table>
Table 6

Excerpts from Entries Giving Evidence of Actualized (A) Pedagogical Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Sample Excerpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Outside Mathematical Context</td>
<td>“The assessment is based on a single situation—choosing a car to rent.”</td>
</tr>
<tr>
<td>Use Hands-on Activities</td>
<td>“We examined the metric terms of grams and milligrams along with the percentage values listed on cereal boxes.”</td>
</tr>
<tr>
<td>Use Cooperative Grouping</td>
<td>“They were heterogeneously arranged in carefully selected learning groups of four to five students within that homogeneously grouped class.”</td>
</tr>
<tr>
<td>Use Interdisciplinary Activities</td>
<td>“They were directed to the grid lines on the edges of maps and they practiced finding towns that had been mentioned most recently in their social studies texts.”</td>
</tr>
<tr>
<td>Use Technology</td>
<td>“Nineteen students used computer-generated graphs to illustrate their data, while five used pencil and paper.”</td>
</tr>
<tr>
<td>Solicit Explanations</td>
<td>“Their next step was to justify if a combination was really possible with a drawing or written explanation if it were possible.”</td>
</tr>
</tbody>
</table>
Table 7

Percent of Portfolio Entries of Each Type with Actual (A) or Potential (P) Use of Each Pedagogical Feature

<table>
<thead>
<tr>
<th>Pedagogical Feature</th>
<th>AU Entries</th>
<th></th>
<th>DU Entries</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual Use</td>
<td>Potential Use</td>
<td>Actual Use</td>
<td>Potential Use</td>
</tr>
<tr>
<td>Use Outside Mathematical Contexts</td>
<td>56</td>
<td>31</td>
<td>88</td>
<td>13</td>
</tr>
<tr>
<td>Use Hands-on Activities</td>
<td>56</td>
<td>3</td>
<td>78</td>
<td>9</td>
</tr>
<tr>
<td>Use Cooperative Grouping</td>
<td>38</td>
<td>22</td>
<td>63</td>
<td>16</td>
</tr>
<tr>
<td>Use Interdisciplinary Activities</td>
<td>25</td>
<td>9</td>
<td>41</td>
<td>3</td>
</tr>
<tr>
<td>Use Technology</td>
<td>28</td>
<td>6</td>
<td>59</td>
<td>3</td>
</tr>
<tr>
<td>Solicit Explanations</td>
<td>28</td>
<td>6</td>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: All percents in this table are based on $n = 32$.
Table 8

Percent of Teachers Actually Using Each Pedagogical Feature

<table>
<thead>
<tr>
<th>Pedagogical Feature</th>
<th>Percent of Teachers Using Each Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Outside Mathematical Contexts</td>
<td>91</td>
</tr>
<tr>
<td>Use Hands-on Activities</td>
<td>84</td>
</tr>
<tr>
<td>Use Cooperative Grouping</td>
<td>66</td>
</tr>
<tr>
<td>Use Interdisciplinary Activities</td>
<td>50</td>
</tr>
<tr>
<td>Use Technology</td>
<td>59</td>
</tr>
<tr>
<td>Solicit Explanations</td>
<td>41</td>
</tr>
</tbody>
</table>

Note: All percents in this table are based on $n = 32$.
Table 9

Number of Teachers Using Each Pedagogical Feature by Type of Portfolio Entry and Cognitive Demands

<table>
<thead>
<tr>
<th>Pedagogical Feature</th>
<th>AU Entries</th>
<th></th>
<th>DU Entries</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Demand</td>
<td>Low Demand</td>
<td>High Demand (1 or 2)</td>
<td>Low Demand</td>
</tr>
<tr>
<td>Use Outside Mathematical Contexts</td>
<td>6</td>
<td>12</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Use Hands-on Activities</td>
<td>6</td>
<td>12</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Use Cooperative Grouping</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Use Interdisciplinary Activities</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Use Technology</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Solicit Explanations</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 10

Number of NBPTS Certified and Non-certified Teachers Submitting High-Demand Activities in At Least One Portfolio Entry

<table>
<thead>
<tr>
<th>NBPTS Certification</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Cognitive Demand Tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Not Present</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>
Table 11

Number of NBPTS Certified and Non-certified Teachers Giving Evidence of Using Pedagogical Features in At Least One Portfolio Entry

<table>
<thead>
<tr>
<th>Feature</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Outside Mathematical Contexts</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Use Hands-on Activities</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Use Cooperative Grouping</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Use Interdisciplinary Activities</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Use Technology</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Solicit Explanations</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>