IV. HOW DO WE RECORD SOUND - microphones

- Electro-Mechanical Transducers
- Convert acoustic energy into electrical energy
- Different pickup elements
- Different pickup patterns
Microphones

- Carbon
 - Rugged
 - Cheap - $1 to $5
 - Limited Frequency Response 100Hz to 5KHz
 - Most Common type in the world
 - Inside telephones
Microphones

- Crystal or Ceramic
 - Fragile
 - Inexpensive $5 to $15
 - 80Hz to 8KHz
Microphones

- Dynamic Ribbon
 - First Pro Quality Mic
 - Somewhat delicate
 - Expensive - $150+
 - 50Hz to 15KHz
 - Slow Transient Response
 - Very Smooth/silky sound
Microphones

- Dynamic Moving Coil
 - Very Rugged
 - Reasonably Priced - $60 to $350
 - 50 Hz to 15 KHz
 - Most popular Pro Mic
Microphones

- **Studio Condenser**
 - Fragile
 - Costly - $150 to $7,000
 - 20Hz to 20KHz
 - Requires constant Polarizing Voltage--Phantom Power or external
 - Excellent Transient Response
Microphones

❖ Electret Condenser
 ● Rugged
 ● Small
 ● Reasonably Priced - $100 to $500
 ● 30Hz to 18KHz
 ● Requires 1.5 volt battery
 ● Lavalier
 ● Cell phone
Pickup Patterns

◆ Omni-Directional
 • Accepts sound from all around mic
 • Ideal for interview situations
Pickup Patterns

- **Cardioid**
 - Accepts sound primarily from the front
 - Ideal for live sound applications
Pickup Patterns

- Hyper-Cardioid & Super Cardioid
 - Accepts sound only from the front
 - Ideal for isolating sound—directional
 - “Shotgun” or “Boom” are common names
Pickup Patterns

- Bi-Directional
 - Accepts sound from front & back
 - Used in music studio recording
 - Also called “Figure of Eight”
Digital--pulse code modulation

- analog converted to dig, then back for playback
- quality excellent
 - increased dynamic range -96 db
 - reduced noise and distortion,
 - most analog problems eliminated (esp gen loss)
- Five steps
5 steps
1. Microphone--transducer

- Changes sound vibration into electrical signal
- this is an analog step
2. Anti-aliasing

- unwanted high frequency signals
 - above the normal hearing range but can be "aliased" into the audible range in sampling.
- pass the original analog (from the mike) signal through a low pass filter.
3. Sampling

- Sample voltages at fixed intervals along the waveform of the analog signal.
- How often you measure the voltage
- The more often the better the signal
 - Sampling frequency
 - Twice its frequency.
 - For 20,000 hz, 40,000 rate
 - Digital audio today uses 32, 44.1, and 48 kHz
 - 32 is for broadcast (max bandwidth is 15k)
 - Pros use 44.1 and 48
Sampling

lower sample rates take fewer snapshots of the waveform.....

resulting in a rough recreation of the waveform.

faster sample rates take more snapshots....

resulting in a smoother and more detailed recreation of the waveform.
4. Quantizing

- samples are converted into discrete values called quantizing levels
 - greater number of levels, greater the accuracy of the representation of the signal.
Quantizing--bit depth

Original Waveform

Waveform Sampled at 16 bits

Waveform Sampled at 8 bits
5. Coding/storage

• Analog voltages converted to binary digits
 • --series of pulses
 • (0--no voltage, 1--voltage)
 • each digit is a bit
 • each bit allows two levels of quantification
 • 2 bits gives 4 levels
• 16 bit system (65,536)
 • sufficient to deal with quantizing noise
 • artifact of the process of quantizing.)
• some 20 bit systems used.
\(n \text{ bits} = 2 \text{ to the } n \text{ quantizing levels} \)

- 2 squared....4
- 2 cubed......8
- 2 to the 4th...16
- 2 to the 5th...32
- 2 to the 6th...64
- 2 to the 7th...128
- 2 to the 8th...256
- 2 to the 16th...65,536
- 2 to the 32nd...4.3 million
V. WHAT IS GOOD SOUND?

- sound that is technically and aesthetically excellent
technical

- frequency response
- signal to noise ratio
- dynamic range
- clean
 - no distortion,
 - no hum
 - no phase cancellation
aesthetic

- intelligibility--words are clear
- tonal balance--
 - no one range stands out
 - too much low--muddy
 - too much high--sibilance + noise
 - too much mid--harsh, shrill
 - timbres sound natural
 - ensembles blend
aesthetic

- spacial balance
 - clear where sounds are coming from

- Definition
 - --each element is defined

- Airiness
 - --open sounding

- Appropriate acoustics
 - radio announcer not in reverberant setting

- production values- combination grabs or moves you.
Slumdog Millionaire
open