The Evolution of CALL

Computer Assisted Language Learning (CALL) is an emerging force in language education. Despite its awkward beginning and the on-going resistance of many in the language teaching community, it is maturing and showing that it can be a powerful tool in the hands of experienced teachers.

In its early days, CALL was driven by technology and technologists. Proponents of CALL tended to focus on the “Computer Assisted” portion of the acronym rather than the “Language Learning” portion. Technology seemed to offer solutions that could be plugged-in and delivered through a box and game-like interactions. Learning would be fun and relatively effortless, and the role of teachers would diminish.

However, technical limitations and the lack of a reliable delivery and support infrastructure led to an adventurous but unstable environment where much money was wasted. Institutions invested in systems that were either underutilized or were used in ways that had little if any benefit for education other than to keep students occupied and labs appearing to be modern. As for teachers, they were seldom consulted or provided with training, partly because there were few in academia with relevant experience and partly because teachers, with justification, regarded CALL with scepticism and fear. There was an implicit belief that teachers and CALL were competing for the same role -- CALL versus classroom-only -- rather than in a partnership where each approach “assisted” the other.

What was missed by many was the recognition that the most effective use of technology is not just to do old things in new ways. Rather, the real opportunity was to examine how the new tools of technology had broken through the page and text barrier,
allowing the development of a new range of listening-based interactions. This created theoretical opportunities for fundamental changes in language learning, including a rethinking of the relationship between the four skills and the learning synergies between them. What was needed was a learning theory and a model to guide the application of technology.

Multi-Modal Learning

Recent research in the neural sciences has provided many insights into how learning takes place and how language learning may be optimized. In particular, it supports the view that multimedia exercises can be designed to take advantage of how neural processes work together in the learning process. Figure 1, for example, is an oversimplified diagram that shows how various processors in the brain communicate with the working memory, which is instrumental in the learning process. The key point in the figure is that multiple processors, such as the visual, auditory, conceptual, phonological, orthographic, and many others, are involved and can be activated in well-designed activities. Research shows that these processors work in parallel in the unconscious and
interact with the working memory and long-term memory to piece together and interpret language -- along with the sensory input that accompanies and supports language.

Neuropsychologist Donald Hebb was one of the first to hypothesize that learning involves the alteration of neural connections. His ideas are often summarized by the phrase: “neurons that fire together wire together,” and this is just what CALL allows and promotes. For language learning, a key element is the synchronized activation of the auditory, phonological, and visual systems in the brain, especially important for listening and reading development. These distinct systems work together with grammatical and conceptual processors to decode sensory input into meaningful language. Damage to any one of them, or the connections between them, can severely limit the ability to learn one or all of the language skills.

Laboratory research has revealed that much of this sensory and language processing is extremely fast, especially for listening and speaking skills, and is beyond conscious control. There is simply no time to reflect on or search for rules when one is listening. Automaticity is required, and this kind of skill learning requires practice of a kind that has not been provided in sufficient quantity or quality by textbook-based instruction.

Practice Makes Perfect

The neurolinguist Steven Pinker says that competence comes from practice, and automaticity comes with *copious* practice. When learning to read, Pinker says, children need practice at connecting letters to sounds, not just immersion in a text-rich environment. He goes on to say:

> Without an understanding of what the mind was designed to do in the environment in which we evolved, the unnatural activity called formal education is unlikely to succeed. (How the Mind Works 342)

Without question, effective practice is the engine that drives long-term learning, but what are the elements of effective practice? The nature of how neural processors work together
and how long-term memories are formed provides valuable insights for both designing
lessons and coaching learners how to use effective practice strategies.

The activation of multiple processors at the same time, for example, increases the
probability that neurons will wire together to form the neural structures and neural
pathways necessary to lead from comprehension, to automaticity, and to long-term
learning. This rewiring takes time and is an unconscious process that involves both
declarative (i.e., memory of events and facts) and procedural memory (i.e., skill memory,
especially involving sequences such as the playing of a piano scale).

Research shows that long-term learning generally requires frequent repetition over
an extended period of time. Long-term learning doesn’t happen overnight when one crams
to pass a vocabulary quiz or consciously memorize a dialog for the next day. Short,
frequent practice sessions repeated over a longer period of time appears to be the most
efficient way to increase language proficiency.

Of course language learning also depends on the quality and comprehensibility of
the language input being practiced. Language models need to be at a suitable level of
comprehensibility, and this is where placement and on-going testing are essential. If
students are not working with language in an optimum range of comprehensibility, their
practice is inefficient and in some cases counterproductive.

Once students are placed, a well-designed multimedia lesson can deliver optimum
language through a fluid combination of visual, auditory, and contextual inputs. It can
present and coordinate these inputs in ways not previously possible. In addition, it can
interact with learners and gather data about their level of comprehension and activity.

With careful sequencing and extension of the language models, students can be
guided to where they recognize, comprehend, and can respond appropriately to the
modelled language patterns and to variations of those patterns without the need for
immediate text or translation support. Then, if they practice saying and recording the
language models, they can activate yet another processor, the phonological processor,
though this processor would also have been used to some degree in the listening phase.
As listening and speaking fluency develop, the student can then focus on text, both reading and writing – the 4 skills path. It is interesting to note that in comparison with listening and speaking, reading and writing processors are relatively slow. Listening and speaking fluency can support the learning of reading and writing skills, but reading fluency can slow down and interfere with the development of listening skills, in part because the slower but stronger reading processors will dominate and cause the listening processors to swerve off course, interrupting the automatic decoding mechanisms that must be developed.

Following the 4-skills path provides repetition and multi-modal reinforcement that leads to long-term learning. It can also increase motivation, especially if the content is varied and extended at each step. Taken together, and repeated over a suitable length of time, these multiple inputs facilitate long-term learning, not only of vocabulary, but also of the unconscious decoding mechanisms that break down and tag chunks of language for their grammatical and syntactic properties. Without these mechanisms, few sentences of any length can be understood even if the definitions of each word are known.

Blended Learning

Guided by research, learning theories, and by actual classroom experience, CALL is now moving toward a blended model where the multimedia computer provides the necessary optimal input and practice activities, and the classroom provides the human element where the language models come to life and are extended in a social context.

Viewed from this blended model, both classroom and multimedia activities play an essential role. Without the social environment of the classroom, learning is tedious, unmotivating, and too restrictive to meet the needs of learners. Typically, drop-out rates are reported to be 80 percent or more in e-learning environments where little or no classroom support is available. On the other hand, without the effective practice provided by well-designed, media-rich courseware, language learning is slow, painful and discouraging, a fact borne out by the results of traditional language learning models which suffer from a lack of practice and an overemphasis on memorization and conscious rule learning that is soon forgotten.
In our experience, the blended model can reduce language-learning time significantly, in some cases by 50 percent or more, depending primarily on the following variables:

1. Scheduling of practice sessions for optimum frequency and duration.
2. Quality and design of practice sessions, supported by coaching, feedback, and suitable learning tasks.
3. Sequencing of content and an appropriate mix of skills so that the strategic support elements of language are developed in a well-designed learning path.
4. Classroom sessions that provide *extension and personalization* of the language models, including the assignment of reading and writing exercises.
5. Suitable technical infrastructure and support.

Once a suitable infrastructure is in place, teacher training is generally the most important factor in the success or failure of a CALL initiative. In the blended model, where practice is emphasized more than ever, students need to be coached and monitored. The quality and design of practice sessions must be supported by coaching and feedback, and this is most effective when provided by a teacher who knows the student and has a good idea about what differentiates effective practice from inefficient practice, the kind that wastes valuable time and de-motivates students.

Well-designed programs can assist the teacher, both in providing coaching and in pointing out practice strategies and materials that are useful at various stages of the learning process. A good records management system can also analyze the study data to identify students who are practicing in inefficient ways, such as not recording or using speech recognition exercises often enough, or those who have other problems that need early intervention. This can be a big time saver for overworked teachers who deal with large numbers of students.

In our own courseware and in our Records Manager, we have developed a new metric, the *Completion Percentage*, to assess how well students are utilizing each lesson. The Completion Percentage is a measure of the number of *micro-learning-steps (MLS)* that a student has completed. Taking our cue from the neural sciences, we define a micro-learning-step to be any one of the following: (1) listening to and comprehending a language utterance, (2) recording and monitoring an utterance with comprehension, (3)
processing information and completing a task in the target language, and (4) reading or writing a sentence or phrase with comprehension in the target language.

To further assist in the monitoring and coaching of students, we have developed specialized software, the *Intelligent Tutor*, which combs through the details of each student’s learning activities and summarizes the results so that teachers can identify which students need additional coaching. In addition, the *Tutor* provides specific suggestions about how the class and individual students within the class might improve their practice strategies.

Assessment

Given the problems inherent in implementing large-scale CALL programs, price and accountability are also important factors. A higher-priced product with value can end up being much less expensive, per student, than a lower-priced product with little or no learning value. Quality and effectiveness matter and they can and should be demonstrated. This can be done in a well-designed pilot program or by examining data that supports the claim of a courseware provider.

For CALL courseware developers such as DynEd, the challenge is to continue to create and support lesson designs and activities that can optimize language learning and show quantifiable benefits. Feedback from well-informed teachers, students, test results, and study records from around the world continue to suggest new patterns and provide ample opportunities for further research in this very exciting field.
References

Lance Knowles, President and Director of Courseware Development
DynEd International

Lance Knowles is among the world's foremost experts on the development and use of multimedia ELT courseware. As the founder and President of DynEd International, he has personally led the design of more than ten multimedia courses, including the world’s first interactive language learning program on CD-ROM in 1987, and the award-winning course, *New Dynamic English.*
This is an exciting time in the field of language teaching. Yet many ESL/EFL professionals are either unaware of or remain indifferent to developments in other fields that are of fundamental importance to language teaching, such as the evolving role of computer assisted language teaching (CALL) and recent learning theories based on neuroscientific studies. New areas of research outside the profession have barely made a dent in how ESL/EFL teachers and academics approach the classroom and materials development, while language teaching conferences and journals continue to focus on many of the same issues that have preoccupied the profession for many years. This inwardness, I suggest, threatens the integrity and competence of the profession, especially in relation to those countries, such as China, where more efficient English language teaching solutions are being sought.

Evolving Role of CALL

Nowhere is fundamental change more apparent than in the area of computer assisted language learning. This is a major breakthrough because it allows learners to interface with the target language in new ways, especially with listening-based activities that should be at the heart of language learning.

Well-designed multimedia lessons can now coordinate visual, auditory and contextual input in ways that a book or language lab cannot. It is now possible for true beginners, for example, to receive and interact with optimal language input from the very first lesson with little or no need for text support. By displaying a simple picture or icon, such as a book, a
triangle, or a number, the learner can process the foreign-sounding phrase and immediately know the meaning. No need for text. No need for explanation.

Using CALL, visual and auditory input delivered in a well-ordered sequence can lead the learner to understand the grammar, syntax and vocabulary of the target language with no need for text support. Learners can interact with the presentation, and have their interactions recorded into their study records and even influence the pace and level of the presentation. This is not an insignificant development given the role that text and textbooks have played in traditional approaches to language teaching.

For years people in the profession have said that listening is the key skill, yet most ESL/EFL classes remain dependent on text-based and reading activities as their primary source of language material. Even during listening exercises, many teachers still ask the class questions while those questions are displayed on a screen or in a textbook. A better strategy would be to reveal the text after the students have answered each question, or not at all, depending on the situation and student proficiency level.

This dependence on text is unfortunate because research shows that reading and listening skills use different pathways within the brain. In addition, the auditory pathway is considerably faster, involving language processors rooted in the brain’s cerebellum, which is far more involved in auditory processing than in any other species. According to one neuroscientist,

“At the rate words are presented in speech, the speaker or listener must be able rapidly to generate associated words and avoid letting earlier associations interfere. The cognitive search process must be as rapid but as shallow as possible. Any slight tendency to perseverate would entirely derail the process.” [Deacon]

Exposing students to auditory input along with text support sets up competing sets of input, making it more difficult to develop the auditory processing speed necessary to decode incoming speech. As another neuroscientist, Richard Restack says, “Competition between sensory channels can also prove disruptive.” [Restak]

When students are studying a lesson, they should, therefore, be coached not to rely on text until after they have developed their ability to understand and repeat the key sentences. However, many students (and teachers) find the use of text to be a comfortable way to learn
because it gives them time for conscious analysis. Though it may be comfortable, research indicates that it isn’t effective. Again, with well-designed CALL lessons, dependence on text can be reduced and the effects on learning can be measured with a fair amount of control.

Listening and speaking skills both involve complex sequences of neural processes and need to be developed in a step-by-step sequence, moving from short, simple phrases to longer, more complex sentences. Students who say they need to use text as a support have generally been placed too high and should be encouraged to focus on easier material, at a level where they can process the language input without text.

Wiring the Brain for English

Learning involves changes in the brain. Electrochemical changes and new connections between neurons must occur for learning to take place. Some of these changes happen quickly, and some happen over a period of days or weeks. One very important advantage of multimedia study is the fact that many parts of the brain are activated at once. Having students listen, look at a visual display, process the information, and then record it can activate several areas in the brain and facilitates long-term learning. This is far different than looking at wordlists or sentences and then trying to memorize them. As the famous neuroscientist Donald Hebbs said as early as 1949:

Neurons that fire together, wire together.

CALL multimedia language exercises can provide this kind of learning activity, again and again, with detailed record-keeping to monitor student activity.

Multimedia is, like the name implies, *multi*-modal. A media-rich lesson gives students practice in using visual and other contextual clues to process the incoming language. The rapid integration of visual, contextual, conceptual, and auditory input, all within the constraints of working memory and without the distraction of text is the basis for developing listening and speaking skills.
Memory, Learning and Practice

Neuroscientists refer to two different types of memory: declarative (explicit) and procedural (implicit). Declarative memory is used to remember specific events or facts, and procedural memory involves the learning of a sequence of actions or skill acquisition.

Though much of the mental lexicon of a language depends on declarative memory, which deals with facts and events, the mental grammar of a language depends on procedural memory, a “distinct neural system”[Ullman] which deals with motor and cognitive skills. Procedural memory depends on a network of neural structures, including cerebellar structures, that execute relatively automatic subroutines. Neural research suggests that these subroutines are instrumental in rapidly pre-processing sequences of rule-governed sounds. These are especially important in developing listening comprehension, where processing speed is critical. There is simply no time to reflect on or search for rules to decode what one is listening to. Automaticity is required, and this kind of skill acquisition requires practice and operational understanding as opposed to conscious knowledge – which can even interfere by diverting one’s attention and losing track of what is being said.

Learning techniques that develop procedural memory and unconscious routines are therefore central to effective language learning. This underscores the importance of learning techniques that develop procedural memories and unconscious routines. This is especially true for listening and speaking development. Practice is the key and should predominate in any language learning environment. Repetitive, interactive exercises, though seemingly mechanical, play an essential role in this type of learning and can better prepare language-students to more confidently participate in classroom-based communicative activities such as oral presentations, role-plays and paired activities where well-practiced language routines can be personalized and extended with relative success and confidence.

Language Learning is Skill Development

One of the failings of traditional language learning practices is the attempt to treat language learning as a body of knowledge to be consciously learned. Though conscious learning certainly plays a part in language learning, studying grammar and memorizing
vocabulary is \textit{not} the way to learn language efficiently. This approach fails to address the larger issue of procedural memory and skill acquisition which is at the heart of language learning and which CALL can address.

Learning to communicate in a second language is like learning how to play a musical instrument. Primarily, it involves a set of sensory and cognitive skills interacting with language input and long-term memories that are retrieved and utilized unconsciously in the working memory. As pointed out above, skill development requires effective practice, and this practice must be done on a regular, frequent basis. For language learning, the most effective practice involves multi-modal, coordinated sets of input that progress from listening to speaking, to reading and then to writing: the \textit{4-skills path}. CALL lessons can play an important part in providing this kind of practice, especially the repetitive practice that is at the heart of skills development. Listening to a sentence several times in succession, voice recording and playback, and speech recognition exercises where students practice making questions are all examples of this kind of repetitive practice.

Studies of the brain and long-term memory formation show that repetition strengthens and even builds neural connections and subassemblies that process language. But repetition needn’t be defined as parroting the same thing over and over. There are different kinds of repetition. One kind of repetition, “shallow” repetition, is the repeating of an exact phrase or group of phrases. However, since language processing involves the use of a large number of processors to decode the sounds and syntactic elements of language, it is helpful to recognize the fact that though sentences may vary on the surface, their underlying structure may be the same. This allows for a different kind of repetition, “deep” repetition.

Deep repetition involves the repetition of the \textit{conceptual} content rather than the surface details. For example, when focusing on one aspect of the life of a fictitious character, such as their daily schedule, one may repeat the content at a deep level without using any of the same content words by shifting the communicative focus to the lives of each student and \textit{their} daily schedules. This kind of deep repetition involves many of the same conceptual processors and helps to wire in the neural assemblies necessary to process that set of concepts in the target language.
Varying the learning modality is another way to get useful repetition. By following the “4-Skills Path” students can practice communicating a set of concepts (information) in different ways. First, content is introduced in a suitable context through multimedia-based listening and speaking activities which are followed up by classroom activities. After going through a lesson several times on different days -- moving from limited comprehension to full comprehension -- students begin to summarize portions of the lesson, ask and answer questions about the lesson and then make oral presentations or do role plays. These activities are then extended through paper-based reading and writing exercises, either by adding details or by personalizing the content, while still respecting the underlying conceptual content. Integrating the 4 skills in this way provides deep repetition without boring students with repetitive tasks that are needlessly tedious.

This 4-skills learning sequence provides repetition that employs many of the same language processors, brings in new vocabulary and grammar, and brings in additional neural processors (orthographic, etc.) that lead to long-term learning. In other words, the linking and sequencing of listening, speaking, reading and writing activities can provide the type of repetition necessary for skill development – but without the sense of mechanical parroting – though a certain amount of shallow repetition is also necessary as well.

Shallow repetition can and should be provided through interactive exercises that employ such interactive technologies as speech recognition, which students return to again and again, despite the fact that the tasks are blatantly repetitive. Using the music metaphor, shallow repetition is like the practicing of musical scales and should be done frequently, as a part of every practice session.
Sequencing Language Models

Perhaps the most difficult area for teachers to develop is the language syllabus itself. What is it that students should be practicing? What is the learning path? Should the focus be on vocabulary and situational phrases that must be memorized and then pieced together somehow when someone needs to communicate? We all know students who think that the key to language learning is to learn as many vocabulary items as possible. Yet we also know that even if one knew every word in the dictionary, one still couldn’t understand a single sentence if the underlying rules of syntax and grammar could not be applied unconsciously. We also know that learning vocabulary items is often an exercise in frustration, because so much is forgotten so quickly.

Again, neuroscience has something to teach us that supports the work of previous writers such as Wilkins (1976), who looked at the underlying conceptual and functional structures of language. In particular, brain research shows clearly that there are highly localized parts of the brain that are conceptual in nature. Poke someone in the brain at just the wrong place, and that person will not be able to determine the relative size or shape of something [Restack].

A key factor in the success of a well-designed ESL/EFL course is the selection of optimal input so that language kernels are presented and developed in a learning path supported by student experience and knowledge about the world, including knowledge of content areas such as math and science, not just daily life. Whether we are requesting, suggesting, or explaining, language inevitably involves the exchange of information, much of which can be broken down into concepts such as time, manner, frequency, direction, and degrees of certainty. These concepts are generally marked by a relatively small set of words and grammatical constructions. This set of language elements has great power, because it governs how words and phrases are combined and interpreted – and they occur with great frequency.

Rather than focusing on the uniqueness of each utterance, learners need to focus on the similarities. This can only happen if the language presentation is designed to show those similarities – especially important at lower proficiency levels. Order prevails through the application of rules and markers. For example, the verb markers have+V(n) and be+V(ing)
always occur in the same order: *have been arriving*. There are no exceptions. In English, one cannot say: *is having arrived*, where the markers are reversed. And we cannot use more than one modal, as in *will can go*. Instead, we say: *will be able to go*, which has the same meaning. Regardless of the verb, these rules still apply and tell us how the verb is being used and interpreted. This ordering or concatenation is done unconsciously by neural assemblies that operate like a chain of little subroutines in a software program.

It isn’t that language diversity or richness comes from a large vocabulary. Rather, it comes from the variations and combinations of a smaller set of vocabulary and language routines which are processed and applied automatically and then adjusted and interpreted to meet the situation. Fine adjustments and interpretation are based on other sensory input such as visual information, context, vocabulary, and previous knowledge – and employ symbolic thinking of a kind that is unique to humans. But in terms of processing speed, it is a minor adjustment to something done before, like shooting a basketball, or picking up a telephone. Each action is unique, but is appended to a learned sequence that functions like a template. The action sequence is the same, but the final adjustments, though critical, allow for learning and memory efficiency.

To see the power of combination, it’s useful to point out that just five numbers: 1, 2, 3, 4, 5 can be arranged in 120 distinct sequences. With ten numbers, the number of distinct sequences grows to 3,628,800. This illustrates how powerful a small number of language items can be, since the combinations are enormous. However, the application of a single rule to the above set of numbers, such as to require that larger numbers must follow smaller numbers, reduces the number of possible combinations to just 1, a clear example of rule-governed simplicity.

In the search for a Universal grammar that underlies all languages, the evidence mounts that this grammar is largely conceptual, and biological in nature, based on how we perceive and experience the world. Organizing the world into time, space, properties, motion, forces and causality are universal and are how we construct the reality about which we communicate.

In this regard, we must also not forget the essential role that visual input and context play in language. The visual display of an icon such as a triangle activates many areas of
the brain. The recognition of a familiar object (or icon) activates knowledge, concepts, and associations about that and similar objects – which are utilized to decode the meaning of a string of sounds. Examples of this ‘iconic’ approach can be found in *First English* and *English for Success*, multimedia courses which were designed for school-age children and take advantage of what the students already know to help bootstrap the language learning process.

With repetition and appropriately sequenced examples, a multimedia lesson that employs a visual, “iconic approach” can be particularly useful in helping learners comprehend and acquire the underlying grammatical-semantic language structures that are thought to be universal and embodied in the brain.

From this perspective, the grammatical-semantic underpinnings of English are like the trunk and branches of a tree. In contrast, the vocabulary and expressions are like the leaves. There are many leaves on a tree, but without the branches they just drift to the ground.

The trunk and branches are therefore the key elements in a syllabus: the grammar and syntax related to the concepts we need to express. And just like a tree, some branches are offshoots of others and deal with higher levels of detail or abstraction not suitable for the beginner. The key point here is that developing the trunk and branches is far more important than piling on lexical items that have nowhere to go but short-term memory.

Furthermore, from our experience, it seems that the branches, when exercised, become sticky. When specifying size or shape, for example, the brain seems conditioned to look for lexical items that will fit onto that branch. Once there, these items have the tags necessary for quick retrieval. This argues against the traditional use of word lists to be memorized.
Instead, lexical items should be presented so that their grammatical function and conceptual meaning are clearly marked. Once the main branches of the tree are established, elaboration and extension of the language to suit the specific needs of the learner, including the building of a rich vocabulary, becomes increasingly efficient.

Emerging Blended Model

Countries with a growing demand for fluent speakers of English are increasingly impatient and dissatisfied with traditional methods of instruction. This has led to large scale, government-sponsored research initiatives that are redefining the role of language teachers and looking for ways to use technology to increase efficiency and cut costs. With the rapid pace of change, teacher training programs will need to redefine their curricula and bring in new areas of expertise.

As the advantages of multimedia and CALL become clear, language education is moving toward a blended model -- a blend of computer and the classroom. The computer provides the necessary language input and practice activities, and the classroom provides the human element and language extension. This combination allows learners to approach language study much more effectively. With training in how to integrate CALL into their lessons, teachers can finally put into practice many of the theories of language acquisition that have developed over the years and which are now finding support in research from other fields, particularly the neurosciences.
References

Pinker, Steven (1994) How could a child use verb syntax to learn verb semantics? Lingua, 92

Lance Knowles is a pioneer in the design and use of multimedia ELT courseware. As founder and president of DynEd International, he has developed over ten multimedia titles, which have been approved by several Ministries of Education and have won more than 30 educational awards. He is an internationally featured speaker at language teaching conferences. Lance can be reached at lknowles@dyned.com