Introduction

PART I Nancy S. Steinhardt

Chinese architecture has been studied less than the architecture of almost any other great civilization on the globe. In Asia as well as the West, the architecture of China is often defined by a single image, the Forbidden City. Even the best-known features of Chinese construction — ceramic tile roof, pagoda profile, or garden pavilion — have not been brought together in a common vocabulary to illuminate distinctive Chinese forms and styles.

The scale of Chinese architecture — in influence, grandeur, and history — is nevertheless without parallel. The history of architecture in China can be traced through nearly ten millennia. Chinese-style tombs, palaces, monasteries, gardens, and other architectural features add their distinctive forms to more than five thousand kilometers of landscape in Asia, from Kyoto to Kashgar.

One frequent comment about Chinese architecture — that it all looks alike — is both supported and dispelled by the artwork in this book. How the many generations of builders documented their work, thereby teaching their skills to subsequent generations, led to a unique system of construction that over time resulted in magnificent technological accomplishments.

First and foremost among these achievements is the interlocking network of wooden supports. Known as the timber frame, it is literally as well as figuratively the skeleton of a Chinese wooden building and, moreover, China’s major technological contribution to architecture worldwide. A wooden frame has supported buildings on Chinese soil for as many as seven millennia, long before the notions of empire or even China were forged. Two other features of Chinese architecture that have been used in combination with the timber frame for many thousands of years are the foundation platform and the decorative roof. These three remain the core of any Chinese structure that uses wood. In more developed buildings, they are known as the foundation, pillar network, and roof-frame network. In still more developed wooden buildings, a fourth fundamental wooden component is added, the bracket set. This component first appeared in the late centuries B.C.E., then developed into a network of pieces that joined pillars to the roof frame.

The importance of joinery cannot be overstated. Since the earliest use of wood as a building material, Chinese pillars, beams, struts, brackets, and roof frames have been cut to interlock perfectly, without the use of fasteners or adhesives. It is unclear whether Chinese builders knew from the start that this kind of joinery allowed for expansion in humid weather, contraction in the cold, and strong resistance to earthquakes. But time has proved that Chinese timber-frame buildings can withstand almost any climate and earthquakes as powerful as 7 or 8 on the Richter scale. Such structures were susceptible only to fire and to natural rotting, which was counteracted by replacing parts as needed.

Detail from Palace City in Beijing, Ming dynasty,
Museum of Chinese History
The case with which builders can replace pieces of structures is perhaps the most ingenious of the many attractive features of Chinese wooden construction. It has allowed not only economical repair but also tremendous potential for modifying a structure, or even transforming it completely. When a Buddha hall was desired, an imperial residence could be made into one by merely changing the interior design: a throne was removed and an altar for images put in its place. When new rituals entered the Buddhist faith, often the changes needed were as minor as moving or reducing the number of pillars to make a larger worship space or extending the front aisle for devotees. When a family grew or became more wealthy, the core structure of its residence could stand unaltered while side rooms were added by new rows of columns, bracketing above them, and a roof. For these reasons, there was little incentive to tear down and replace an entire structure. It was more likely for a building to be carefully dismantled and either rebuilt elsewhere or reused as parts in other architecture.

Although wood, brick, stone, mud-earth, ceramic tile, and even metal are used in Chinese construction, Chinese builders achieved such unparalleled flexibility, adaptability, and versatility in wood that most masonry construction, both freestanding and in funerary architecture underground, imitated the details of wooden architecture. That kind of imitation, as well as the ease of adaptability to secular to religious or small to large, was made possible by another extraordinary feature of the Chinese building system: modularity. The Chinese module and submodule were implemented very early, long before the first text, from the twelfth century, that explains their system.

The system itself, intended for court-sponsored building projects— is elaborate. It prescribes eight ranks, each based on the cross section of one component of the Chinese bracket set. Ideally, the fundamental pieces of the building—every other bracket-set piece, the heights of columns, lengths of beams, and distances between these vertical and horizontal structural features—were determined by a proportion, which was in turn decided by the specific rank of a building. Although exceptions were made for practical reasons specific to a structure, such a system was generally followed and meant that pieces of wood for columns, posts, and small and large supports were pre-sized and could be pre-cut. Thus it was possible for a building in southeastern China to closely resemble one in the northwest; a Buddhist hall in the Yellow River valley could look very much like one along the Yangzi, and a hall on the Central Plain could be a near clone of one on the slope of an isolated mountain. As long as two buildings were of the same rank, the parts of their timber frames were generated by the same module.

Two other fundamental features of Chinese construction are inherent in the system just described. The modular and easily amendable wooden support system does not require a great architect to guarantee its success. Historically, Chinese architecture has been largely the art of craftsmen, not just the men who cut and joined wooden members, but bricklayers, stone carvers, decorative painters, and those who specialized in what the Chinese call minor carpentry, which included the carving of door, cabinet, or window designs.

Indeed, China's early architects remain mostly unknown. Those whose names have been documented were court employees with official rank. Some are discussed in this book. The role of these "architects" was primarily to supervise construction and less often to design large-scale building projects, even entire cities. They were usually known in Chinese as builders, master craftsmen, or by their official position in, most often, the Board of Works. In Chinese, the words for both architecture and architect, jianzhu and jianzhuushi or jianzhi, are primarily twentieth-century terms, as modern as the concept.

The clearly defined, prescribed, easily implemented system that could be adapted for religious and secular purposes, and on a grand or humble scale, has had a far-reaching and profound influence on the architecture of other Asian cultures. Because Chinese architecture could be built almost as easily outside China as within the walls of its palace cities, Chinese buildings and Chinese building forms have been sought and cultivated both by invaders who strove to establish themselves on Chinese soil and by non-Chinese leaders of strong empires beyond China's borders. The golden and azure roof tiles that projected above the low walls of a Chinese palace, military commandery, prefectural capital, or commercial town were the most potent of symbols: they proclaimed entry into the Chinese sphere and all that was associated with it. Beneath those roofs and behind those walls a Japanese courtier could protest his allegiance to his emperor through ritual death and a grandson of Chinggis Khan could drink mare's milk in a felt tent, but to the one who approached the architectural spaces from outside, the message was that a power as great as China must be reckoned with.

The walls of Chinese buildings serve a different purpose than do the pillars, beams, and brackets: they represent the Chinese concept of space. The Chinese have built enclosures and have related buildings to one
another within defined or implied enclosures for almost as long as they have put structures on the soil. In fact, the origin of the Chinese concept of urbanism is traced to pounded-earth walls that have been excavated at Neolithic settlements since the third millennium B.C.E. When the Chinese provided a word for these enclosures, cheng, it was the same word they used for city. In other words, nearly four millennia ago, the Chinese drew no distinction between a city and a wall. A city did not exist in China without a wall, and the presence of a wall meant that a city was inside.

On a smaller scale, spaces soon came to be walled by enclosing arcades, and inside those arcades were courtyards on which buildings faced. In some cases the arcades directly connected buildings, in others, more than one building stood inside the courtyard or an adjoining wall helped define the interrelationship between buildings and building groups. Indeed, the concept of architecture in China rarely includes just one building; it signifies a group.

Perhaps it is this expansive definition of architecture as an interrelated group of structures in a defined space that has led to the broad (at least by Western standards) understanding of what architecture is. In China today, architecture is cities, palaces, temples, tombs, gardens, and decorative carpentry. Given the importance of enclosure in Chinese space, the inclusion of cities in the Chinese definition of architecture is not surprising. The inclusion of gardens, too, or landscape architecture, is understandable when one enters a Chinese garden, for it is as much a repository of buildings as of nature.

Traditional writings on Chinese architecture also stretch the boundaries of definition—they touch on topics of history and culture that tell us far more than how buildings and building groups were planned and created. Such writings also often feature historical research, prose, poetry, and Chinese literary genres that combine prose and poetry—aspects that have been studied at least as rigorously as the buildings themselves. For many thousands of years, architecture was not a specialty, but instead was a part of the overall religious and imperial culture of China. Not until the beginning of the twentieth century did the Chinese become interested in construction as a design-inspired pursuit of architects. In the 1910s and 1920s Chinese students went abroad to Japan and the United States to learn how to be architects. They returned to China, a core group of no more than twenty, to establish China’s first architecture schools and to commence the historical investigation of old buildings. Before war broke out across China in the 1930s, these scholars were able to contribute what are today some of the most valuable studies of China’s premodern buildings. Many of the buildings first described in these writings were lost during the war, and after the conflict most of the scholars became teachers and architects.

The Chinese authors of this book were students of that first group of Chinese men and women who went abroad to learn the profession of architecture. They are thus a direct link both to the beginnings of architectural history in China and to the vision of their teachers. Their understanding of Chinese architecture represents that vision, and their line drawings reproduced in this book, along with some drawn by their first-generation teachers, show the training of China’s very first architects.

From the inception of this book at meetings in Beijing in 1992, it has been a goal of mine to present Chinese-style architectural history to the Western reader. This is only partly because, like the Chinese authors, I had been introduced to the field by a student of the first generation of Chinese architects and architectural historians (in my case in Taiwan). It was equally because the study of Chinese architecture is still relatively new. As we worked on the book, we were aware of new ideas and theories about Chinese architecture, all of which are based on the buildings themselves. And we were also aware that the ideas and approaches that may eventually lead to a synthetic study of Chinese architecture would have to be balanced and verified by new archaeological discoveries. Importantly, too, we agreed that, so far, Western theoretical approaches to Chinese architecture have been most elucidating for single buildings or subsets of Chinese architecture, such as buildings of a certain type from one time period or place. The reader will thus find no dearth of new ideas about Chinese architecture in this book. But we have limited our interpretation, refraining from suggesting how Western ideas about architecture and architectural history might be applied to the study of Chinese buildings.

Many Chinese architects and architectural historians believe that a clear separation exists between pre-twentieth-century and twentieth-century buildings. This book is concerned exclusively with the first group, what we might call traditional Chinese architecture. In addition to well-known sites, however, the most important of the newly discovered early wooden buildings are here, in description if not in pictures. A few of the most recently uncovered tombs and villages are discussed as well, even though ongoing excavations may dramatically improve or change our understanding of the architecture of any time period or geographic region.

The book is organized chronologically by dynasty, in large part to dispel once and for all the myth that Chinese
architecture has not evolved over time. We also decided to maintain the traditional Chinese presentation of the topic, the one used in the Chinese version of this book and in many of the books by China's first architectural historians. This means that, to the extent material is available, each chapter includes sections on cities, palatial architecture, religious architecture, tombs, and gardens, and in some cases discussions of bridges, walls, fortifications, academies, or architectural writings.

One who reads both the Chinese and English versions of this book will notice differences. From the beginning, the English book has been viewed as a serious and probing introduction to the field for an educated reader, but not one who has necessarily spent enough time in China to see many of its buildings. To achieve this goal, the book is longer than its Chinese counterpart. The additions include historical and cultural background and explanations of Chinese religions that were not necessary for the Chinese edition, but these changes, approved by all of the book's editors, Chinese and American, were not intended to alter the basic meaning of the Chinese text.
Introduction

PART II Qiao Yun

Classical Chinese architecture has had a long and creative history. The earliest buildings and building sites can be dated back some seven thousand years, and important examples of classical architecture run into the thousands. Such features as a structural system based on gracefully wrought timber, meticulous and comprehensive city planning, a rich and resplendent use of color and ornamentation on buildings, the poetic style of garden design in the fashion of natural landscapes, and the arrangement and axial layout of buildings in conjunction with courtyards begin to suggest the distinctive characteristics of the remarkable architectural legacy this book explores. Written by some of China's greatest architectural historians, some practicing architects as well, this book recounts for international readers the story of China's architectural achievements, the forms they took, and some of the factors that shaped them.

From earliest times, the Chinese have lived, worked, and shaped their unique civilization on varied and often challenging terrain. The 9.6 million square kilometers of China, the largest country in Asia, stretch from the Zengmu Reef in the Nansha Archipelago in the south to the Heilongjiang River near Mobe in the north, and from the Pamirs in the west to the confluence of the Heilongjiang and the Wusuli River in the east. Most of the settled areas are in the northern temperate zone or the subtropics in the East Asian monsoon zone.

Those who lived in China in ancient eras adapted their architecture to their particular environments with a wide array of styles and forms. Those living in the middle reaches of the Yellow River, for example, a loess plateau with thick layers of loose soil and dense forests, created dwellings made to resist cold, wind, and rain: the simple wooden structures had earthen walls, with roofs made of mud and grass or thatch, and faced south to get more light in the winter and resist the north wind. In south China, by contrast, houses mainly faced south or southeast in order to get the southeast wind from the sea. In some places, stilted houses were built so that air might move freely underneath and help avoid dampness. Construction materials included bamboo and reeds that were abundant in the south, in addition to mud and wood. In mountainous areas, stone was widely used for house construction because it was so readily available.

Chinese architecture has also been shaped by some fifty-six distinct ethnic groups. The Han people are the most numerous and constitute 94 percent of the total population, but other groups, living elsewhere or sometimes different local building materials, modified the traditions according to their own needs and customs, giving rise to innovations that could be copied. In the loess plateau in north China and the Yellow River valley, the Han people dug cave dwellings or built houses with walls made of rammed earth. Later people learned to
make bricks with yellow earth, and thus more durable dwellings. In south China, where the weather is damp and rainy, people built houses with bamboo and timber on stilts; on the Qinghai-Tibetan plateau, where there is little precipitation and the climate is dry and the temperature varies greatly between day and night, most houses have thick walls and flat roofs. In Mongol areas, by contrast, a nomadic life fit with easily movable yurts. In northeast China, houses with pointed arch roofs are common. The shaping of architecture by the natural environment is evident, and such differences contributed greatly to China's rich architectural history.

For more than four thousand years China's imperial cities have shared certain architectural characteristics regardless of where they were built. Early patterns were clearly taking shape no later than the Shang dynasty (ca. 1600-1046 B.C.E.), ones that brought together economic, military, and political needs with those of rank and principles of classification. The form of the city itself was designed to be a testament to imperial power and served to legitimize the ruler. The location of palaces, government buildings, bell and drum towers, and other public buildings in the center created a central axis, which became a defining characteristic of Chinese imperial cities. By the Warring States period (475-221 B.C.E.) much of this was written in such works as the "Record of Trades." Key aspects of Chinese architecture developed over the millennium within this imperial system of city planning.

Chinese architecture was deeply influenced as well by the great belief systems so long interwoven with the history of Chinese civilization. Among them none was more important than Confucianism, which began its rise to prominence in the fifth century B.C.E., during the Zhou dynasty. After Emperor Wu di (141-86 B.C.E.) of the Western Han dynasty advocated "revering the teachings of Confucius alone and banning all other schools," Confucianism became the predominant ideology for more than two thousand years. Although Daoism spread in the late Han dynasty and Buddhism was introduced then and flourished long thereafter, these two belief systems never proved quite so influential. By the time they became prominent, many Chinese architectural forms had already been established within a largely indigenous civilization, gradually emerging from the ongoing cultural exchanges and synthesis within its own territory and among its own ethnic groups.

By the time of the early Shang and Zhou dynasties, even before the emergence of Confucianism, the wooden frame and the courtyard style — later so central in Chinese architecture — had already emerged. During the Qin and Han dynasties, a distinctive system of architecture, from single structures to complexes of buildings to plans for cities, had become closely meshed with the political, economic, and cultural contexts so decisive for the later evolution of architectural forms. When Buddhism and its ideas and architectural innovations entered China, they were gradually assimilated, greatly enriching and yet not supplanting the earlier and deeply persistent concepts and patterns of building.

Nevertheless, Confucianism proved most influential to China's architecture in the earliest periods in numerous ways. Confucianism regarded rites as central to successful state administration and standards of personal behavior, and this produced and reinforced various styles and types of buildings, such as palatial halls, temples, altars, and mausoleums. Its emphasis on the imperial system of power and the centrality of the emperor as the Son of Heaven is evident in the ways the capital city placed the palace at its center, symbolizing the supreme power of the emperor. The square-shaped, symmetrical capital city, with houses located on both sides of a central axis, was designed to reinforce the vision of the imperial center as the correct and moral ordering focus for society and daily life. To worship heaven and earth was a critical imperial responsibility architecturally embodied in a host of buildings — the Temple of Heaven, the Temple of Earth, the Imperial Ancestors' Temple, the Altar for Worshiping the God of Agriculture, and the Altars for Worshiping the Sun and the Moon. Filial obedience also entailed the construction of ancestral temples and tombs, and the correct ordering of senior and junior, superior and inferior, upper and lower, permeates architectural forms even in the smallest details. Hence the width of rooms, style, color, and decorations on the roof all were strictly stipulated according to one's social status, and even if it was sometimes ignored, officially no one was allowed to break the rule.

Still, Chinese architecture was at times greatly influenced by outside ideas and cultures. Exchanges of building techniques and architectural arts between China and other countries become evident especially beginning with the Western Jin dynasty, and from that time on an extensive transfer of ideas took place with both eastern and western neighbors. As early as the third century C.E., Buddhist grotto carving was introduced from India, and up through the Sui and Tang dynasties came a dazzling number of grottoes, from those in Dunhuang to the Northern Wei grottoes at Yungang in Datong, to those at Xiangyangshan near Handan, Hebei province. The stupa was another architectural type introduced from India.
The Nepalese artisan Anige, who served in the Yuan court for more than forty years, designed the pagoda in the Mioying Temple in Beijing.

Islam proved another influence on China, following its introduction in the seventh century. It came via Persia through Xinjiang to the hinterland of China, or by sea route to Guangzhou, Quanzhou, Yangzhou, and other places on China's southeastern coast. Beginning in the Tang dynasty, many Arabian and Persian merchants settled in China, some for dozens of years, and some for generations. With Islam came Islamic architecture, as the sojourner built religious buildings, such as the Husain Mosque in Guangzhou and the Shenggu Mosque in Quanzhou. During the Song, Yuan, Ming, and Qing dynasties, Muslims constructed many mosques in western China and coastal areas; during the Yuan dynasty there were thirty-five mosques in the capital alone. All these buildings introduced Arabian and western Asian architectural styles and practices to China. Over time, mosques and religious buildings with Chinese styles appeared, but the layout, roof style, and outer and inner decorations retained Arabian characteristics and flavor, greatly enriching the content of Chinese ancient architecture.

Much has been written in this book and elsewhere about the strength of the timber frame and the significant technical achievement of the modular system. But the size and majesty of Chinese structures and building groups can obscure the details that speak to the importance of artistry in the many cultures that contributed to the Chinese architectural tradition. Chinese architecture developed in its overall approach and major characteristics from how these various aspects came together, such as the structural frame, the building groups, ornamentation and attention to detail, and gardens and their distinct views. Each of these features deserves a few words here.

The Wooden Structural Frame

The structural system using wooden beams and columns was first used extensively in the Spring and Autumn period (770–476 B.C.E.), and it became well developed during the Han dynasty (206 B.C.E.–220 C.E.). Wooden structural frames can be roughly divided into three types: tailiang (column, beam, and struts), chuandou (column and tiebeam), and jingsan (“log cabin”). In a tailiang structure—the most popular type—columns, or pillars, are erected on bases along the length and depth of the house. Beams, or lintels, placed on top of the columns span the spaces between them horizontally; lintels also connect two parallel sets of frames. Above the beams, further sets of posts may be erected to make a second story, and so on. To form the roof, purlins run the length of the building, resting on the tops of the uppermost columns, as does a ridge pole at the peak of the roof. Rafters are laid on top of the purlins, sloping down from the ridge to the eaves. In the interior of the building, the space defined by four columns constitutes a bay, or “room.” A house might consist of one, two, three bays, or more, and a large ceremonial hall could have as many as fifteen or more bays.

Dougong refers to the unique system of brackets placed on top of columns to provide further support to beams or overhanging eaves. Each bracket set is formed by a large wooden block, called dou, which rests on the column and provides a firm base for the pieces called seng, bow-shaped arms that in turn support the beam (or other dou) above them. The bracket components resting on any one column and supporting any one beam may be multiplied almost endlessly, allowing the column to support ever greater weight; at the same time they perform an integral function in holding the entire building structure together. Dougong evolved from a simple bed for supporting a beam into intricate grids of complex bracket sets, reaching the peak of development during the Tang-Song period. During the Yuan, Ming, and Qing dynasties, bracket sets became smaller and lost some of their structural function. By this time, dougong were used, largely as decoration and to reflect social status, sometimes more than for support of a roof.

The merits of the wooden structural frame were many. One of them was cost efficiency, because the dense forests in the middle reaches of the Yellow River in ancient China provided abundant timber resources, making wood cheaper and more accessible than stone or bricks. Another was that, because the weight of the building was borne by the wooden frame, the walls were not load-bearing, so all they had to do was enclose and divide up the space. The result was great flexibility in making doors and windows and in selecting materials for the walls. This design feature fit with various climatic conditions: the height of the house, the thickness and materials of the walls, and the location and size of doors and windows could be made in accordance with the local climate. Such structures had an added advantage: they tended to diminish the damage from earthquakes. The resilient quality of timber and the flexibility of the mortise and tenon joinery made these structures quite elastic; even the walls might collapse, but the wooden frame would usually survive.

The wooden structural frame also allowed for a great flexibility in the form of houses as well as their construc-
tion. There were solid walls, grille walls, walls with windows, walls made of removable screens, or no walls at all, just exposed columns (such as in pavilions). Some houses were surrounded by a veranda, or there might be vestibules and exposed columns in front and back. Doors, windows, columns, and walls were often decorated in different styles according to different locations and available materials. Roofs were rich and varied: gable, hip, mansard, flat, and pointed roofs, as well as compound-eave roofs, appeared as early as the Han dynasty. Combination hip-and-gable roofs, single-sloped and cross-sloped roofs, gabled roofs, arch roofs, and domes appeared later. Large overhanging eaves were often adopted to protect the wooden structures from rain while also allowing unobstructed lighting. Upbent roofs, folded-up roofs, and raised roof corners later offered buildings a light and graceful image.

Ancient Chinese buildings have three parts: the base, the body, and the roof. Important buildings were always built on a base, usually of one layer, though large halls, such as the Hall of Supreme Harmony (the largest wooden building in China) in the Forbidden City of the Ming and Qing dynasties in Beijing, merited a three-layer base. Buildings could be rectangular, square, hexagonal, octagonal, or circular in plan.

Building Groups

Traditional Chinese architecture, whether imperial palace or common residential house, usually means a group composed of many separate buildings. The buildings were always laid out according to a certain orientation, usually along a north—south axis with the main building facing south; only a few architectural complexes, owing to specific limits of topography, religious beliefs, or geomancy were otherwise. This layout, largely originating in the middle reaches of the Yellow River, allows buildings to face the sun and helps shelter them from the cold north wind, and was seen as compatible with the patriarchal system and ethical code of Chinese society as reflected in Confucian ideology. The main building was located on the central axis, and secondary buildings were situated in front of it to form a square or rectangular courtyard, providing the place with a sense of security.

When one courtyard was not enough, more might be built in front of the main building, behind it, or symmetrically on both sides of it. The Temple to Confucius at Qufu in Shandong province, for instance, had ten courtyards located on the main axis, and many more on both sides. The layout of the Forbidden City in Beijing had an even more magnificent display of courtyards. Temples, mausoleums, and other buildings for ceremonial use were regulated more strictly, although these layouts were neither dull nor rigid, and the space in multicult complex was quite adaptable. A house in Beijing might have a set of four varied courtyards: the first a long court traversing the main axis, the second an oblong enclosed on three sides, the third a square, and the fourth a long arcade court on the axis. The four courtyards might not only have different plans but could be surrounded by buildings of different elevations, with flowers and trees, rockery, and landscaping designed to create a quiet and refreshing environment.

Ornamentation

Every part of a traditional Chinese building was decorated, using a large variety of colors and different materials. Terraces and steps at the base of a building were engraved, and decorative railings often surrounded both. Roof outlines provided the greatest opportunity for ornamental features. One of the most impressive roofs in China, at the Hall of Supreme Harmony in the Forbidden City, has multiple eaves, five ridges, and four valleys. Each end of the main ridge is decorated with a large dragon, its tail stretching upward and its mouth opened as if to swallow the ridge. Adding to the exquisite detail, nine zoomorphic ornaments of colored glass mark each corner of the eaves of the other four ridges.

Walls, doors, windows, and partitions were decorated too. Partitions, curio stands, and bookshelves adorned as well as divided interior spaces. Ceilings also served ornamental purposes. In an ordinary residence the ceiling might be made simply of wooden strips or bamboo stalks nailed to the joints, then covered with paper pasted to this backing. In the lattice ceiling, used for important buildings, wooden studs formed a trellis network between beams, and the open spaces between studs were then filled with color paintings on wooden boards. The most complicated treatment, the coffered ceiling, was more decorative than the lattice ceiling and was usually reserved for the upper part of a palatial hall or a Buddhist altar. In it, wooden framework, usually in three layers, forms sunken panels in the ceiling, with each panel square at the bottom and circular at the top. Each panel resembles a well in shape, and often the central panel is painted with water-flower patterns: hence the name qing-jing (qing meaning algae, and jing a well).
Color paintings on buildings are another distinguishing feature of Chinese construction, evolving from the use of paint to protect beams, columns, doors, windows, and other wooden components against pests and decay. Strict regulations governed such painting of buildings. Common people were forbidden to paint color pictures on their houses. In royal palaces, different motifs were used for different buildings; the highest and most prestigious motif was the dragon, magnificent and sumptuous, placed on important palace halls. On secondary buildings various color patterns, simple but elegant, were painted. Pavilions, kiosks, and towers in the gardens were often decorated with color paintings of mostly mountains and water, grass and insects, flowers and plants, which are known as Suzhou style after the city where they are frequently found.

Gardens

Like classical Chinese poetry, painting, and music, gardens were imbued with an artistic purpose. Mountains, water, rock and stone, flowers and plants, together with their associated buildings, expressed the vision of an artistic creation. Gardens were designed in such a way that the beauty of nature was elevated to the beauty of art, expressing the creator’s ideas through refinement, utilization of the best aspects of the materials, and observation. The viewer, inspired by the scene, could enhance the artistic vision as well, and by so doing attain an experience filled with spiritual enjoyment.

Three broad categories capture the artistic concerns of classic Chinese gardens: the natural realm, administering world affairs, and immortality. The natural vision is common in the private gardens of scholars, especially those of southeastern China. Such gardens have long been associated with the famous ancient Chinese philosophers Laozi and Zhuangzi, who stressed freedom from affectation and indifference to fame or worldly gain. Confucianism, with its stress on practical results and the great importance attached to a sense of social duty and human relations, fit well with an ethos of gardens as a vision of managing world affairs. Imperial gardens capture this dimension well, as evident in half of the forty scenic spots in Beijing’s Yuanming imperial garden. Buddhists and Daoists, with their stress on nirvana and immortality, built gardens to deities, such as royal gardens and gardens in temples in every region of China.

The creativity of classical Chinese architecture is evident in its legacy of rich and varied forms, colors, and ornamentation, and its ordering of space. Beauty emerged out of the exquisite integration of artistry and function, materials and structure. Raised terraces guard against dampness, large eave overhangs protect against rain, lattices on windows and doors facilitate the mounting of paper to admit light, and decorated tiles are an integral component of roofing materials. Even the painted frieze, so decorative in spirit, developed from a need to preserve timber by the application of paint. Buildings from small residences to temples and immense palaces, with their gardens and courtyards and innumerable doors and gates, sought a harmonious and unified layout in their architectural composition, one in which contrasting attributes of space, high and low, near and far, wide and narrow, spare and dense, yield a rich texture of varied visual effects. The scholars writing this book explore this remarkable architectural legacy and how such accomplished skill and artistry developed over thousands of years. In so doing they offer both a history of China’s extraordinary architectural tradition and an understanding and appreciation of its most distinctive contributions.