Exam 2 Equations

Molality of solute \((m)\) = \(\text{mol solute} \over \text{kg solvent}\)

Mole fraction of A \((X_A)\) = \(n_A \over n_A + n_B + n_C + \ldots\)

Weight % A = \(\text{mass of A} \over \text{mass of A} + \text{mass of B} + \text{mass of C} + \ldots\)

Henry’s Law
\(S_g = k_H P_g\)
where \(S_g\) is the solubility of the gas, \(k_H\) is a constant, and \(P_g\) is the partial pressure of the gaseous solute

Raoult’s Law
\(P_{\text{solute}} = X_{\text{solute}} P^\circ_{\text{solvent}}\)
where \(P^\circ_{\text{solvent}}\) is the vapor pressure of the pure solvent

Mole fraction of solvent \((X_{\text{solvent}})\) = \(n_{\text{solvent}} \over n_{\text{solvent}} + (n_{\text{solute}} x i)\)

Elevation in boiling point \(\Delta T_{BP} = T_F - T_I = m_{\text{solute}} x k_{BP} x i\)

Freezing point depression \(\Delta T_{FP} = T_F - T_I = m_{\text{solute}} x k_{FP} x i\)
Osmotic pressure

\[\Pi = c \times R \times T \times i \]
where \(c \) is solute concentration in \(\text{mol/L} \), \(R \) is the gas constant \(0.0821 \text{ L} \cdot \text{atm/K} \cdot \text{mol} \), and \(T \) is temperature in kelvins

Rate_{RXN} = k[A]^x[B]^y
where \(aA + bB \rightarrow cC \), \(x \) is the order of the reaction with respect to \(A \), and \(y \) is the order of the reaction with respect to \(B \)

Concentration at half-life
\[[R]_{\frac{1}{2}} = \frac{1}{2} [R]_0 \]

Half-life for 0th order reaction
\[t_{1/2} = \frac{[R]_0}{2k} \]

Half-life for a first order reaction
\[t_{1/2} = 0.693/k \]

Decimal % remaining for first order reactions
\[\text{Decimal } \% = 0.5^x \]
where \(x \) is the number of half-lives that have passed

Half-life for second order reaction
\[t_{1/2} = \frac{[R]_0}{k} \]
Molecular Orbital Diagram