Methods

Announcement

• Staff change:
 – The research participation coordinator is now Ms. Jenny Babbitt, babbit7@msu.edu
 – Syllabus has been updated online

Research designs

• Two broad classes
• Observational
 – Researcher studies the world as it is (more or less)
 – Case studies, correlational studies, quasi-experiments
• Experimental
 – Researcher manipulates the world, somehow
 – Then measures the effects of the manipulation

Experimental designs

• Manipulate a variable, then compare the different conditions to measure the effects
• Ideally, conditions should match on all variables other than the manipulated one
• By definition, an experiment involves a manipulation
 – If you can identify the manipulation, it’s an experiment; if you can’t, it isn’t

Elements of an experiment

• A variable: Something whose value can change
 – Testosterone exposure, rape survivor decisions, family environment, amount of practice, …
• Independent variable: What you manipulate
 – Each value is a level, helps define a condition
• Dependent variable: What you measure
• Confounding variable: A variable that doesn’t match across groups (and isn’t an IV)
 – A good design has as few as possible

Example 1

• Independent variable(s)?
 – Hormone (levels: ghrelin vs. control)
 – Picture type (levels: food vs. non-food)
 – The design has $2 \times 2 = 4$ conditions:
 • ghrelin-food, ghrelin-nonfood, control-food, control-nonfood
• Dependent variable(s)?
 – Brain activation while looking at pictures
 – Memory for pictures, afterwards
Example 1

Possible confounding variables?

– Suppose only the ghrelin group got an injection
 • May make people nervous in ways that could affect appetite
 • Probably have to give a sham dose to control group
– Suppose the groups were run at different times
 • Control group @ 10am
 • Ghrelin group @ 11am
 • Control group was a little closer to breakfast
 • Have to control for time of day

Two types of manipulations

• Between subjects
 – One subject participates in one condition
 – Subjects are randomly assigned to conditions
• Within subjects
 – Each subject participates in all conditions
 – Each matches conditions in different ways
 – And has different strengths and weaknesses

Within-subjects design

• Each person participates in all conditions
 – So in one sense conditions are perfectly matched
• But participating in one condition may change someone for the other conditions
 – E.g., they’ve already seen the pictures once
 • So need different sets of stimuli
 – E.g., an injection your first visit to the lab may change your attitude toward the second
 • So counterbalance: Have different subjects participate in different orders

Example 1

What kind of design did they use?

– Probably mixed
 – The hormone manipulation was between
 • A within design would’ve been pretty complicated
 – The picture type manipulation was within
 • A within design is easy
 • Especially if the hormone manipulation was between

Internal validity

• An experiment has good internal validity if there are no obvious confounding variables
 – I.e., conditions should be as closely matched as possible at the start of the experiment
 – So that after the experiment you can conclude that the manipulation caused any condition differences

Between-subjects design

• Subjects are randomly assigned to conditions
 – For each subject, flip a coin to see which condition they are assigned to
• Random assignment helps cancel differences
 – Suppose Alice shows up at the experiment hungry
 – With random assignment, each condition should have roughly equal numbers of hungry people
 – If the sample is large enough
Example 2

• Independent variable(s)?
 – Virtual scene type (alcohol vs. neutral)
• Dependent variable(s)?
 – Level of craving

Example 2:

 Claim was that external validity was high because they used virtual reality and smells

External validity

• A study has good *external validity* if it reflects the world as it is
 – In terms of participants, materials, and procedure
 – Lets us conclude that the results generalize to relevant situations
• Example 2:
 – Claim was that external validity was high because they used virtual reality and smells

Example 3

• Question: Are boys or girls more aggressive?
• Can we answer this with an experiment?
 – No: Can’t manipulate a child’s sex
 – Has to be a *quasi-experiment*
 • Like a between-subjects design, but groups are intact
 • Have to be especially concerned about confounds

Defining a variable

• A definition should be *operational*
 – Give specific rules for measuring it
 – E.g., Rules for measuring aggression
• A definition should have *construct validity*
 – The variable should measure the construct you’re interested in
 – E.g., Do we count playful acts that only *simulate* aggression?