Methods

Research designs

- Two broad classes
 - Observational
 - Researcher studies the world as it is (more or less)
 - Case studies, correlational studies, quasi-experiments
 - Experimental
 - Researcher manipulates the world, somehow
 - Then measures the effects of the manipulation

Experimental designs

- Manipulate a variable, then compare the different conditions to measure the effects
- Ideally, conditions should match on all variables other than the manipulated one
- An experiment involves a manipulation
 - If you can identify the manipulation, it’s an experiment. If you can’t, it isn’t

Elements of an experiment

- A variable: Something whose value can change
 - Testosterone exposure, rape survivor decisions, family environment, amount of practice, ...
- Independent variable: What you manipulate
 - Each value is a level, helps define a condition
 - If there are two independent variables, each with two levels, how many conditions?
 - $2 \times 2 = 4$

Elements of an experiment

- Dependent variable: What you measure
 - “Depends” on the independent variable
- Confounding variable: A variable that doesn’t match across groups
 - And that isn’t an independent variable
 - A good design has as few confounds as possible

Example 1

- Independent variable(s)?
 - Hormone (levels: ghrelin vs. control)
 - Picture type (levels: food vs. non-food)
 - Conditions:
 - ghrelin-food, ghrelin-nonfood,
 control-food, control-nonfood
- Dependent variable(s)?
 - Brain activation while looking at pictures
 - Memory for the pictures after seeing them
Example 1

- Possible confounding variables?
 - Suppose only the ghrelin group got an injection
 - The injection itself could affect appetite
 - So give a sham dose to control group
 - Suppose the groups were run at different times
 - Control group @ 10am
 - Ghrelin group @ 11am
 - Ghrelin group may be growly before lunch
 - Have to control for time of day

Internal validity

- An experiment has good *internal validity* if
 - there are no obvious confounding variables
 - Conditions are as closely matched as possible at
 - the start of the experiment
 - So you can conclude that the manipulation
 - caused any condition differences

Two types of manipulations

- **Between subjects**
 - Each subject participates in one condition
 - Subjects are randomly assigned to conditions
- **Within subjects**
 - Each subject participates in all conditions
 - Each matches conditions in different ways
 - And has different strengths and weaknesses

Between-subjects manipulation

- Subjects are *randomly assigned* to conditions
 - For each subject, flip a coin to see which condition they are assigned to
 - Random assignment helps cancel differences
 - Suppose Alice shows up at the experiment hungry
 - With random assignment, each condition should have roughly equal numbers of hungry people
 - If the sample is large enough

Within-subjects manipulation

- Each person participates in all conditions
 - So in one sense conditions are perfectly matched
 - But participating in one condition may change someone for the other conditions
 - E.g., they've already seen the pictures once
 - So need different sets of stimuli
 - E.g., an injection your first visit to the lab may change your attitude toward the second
 - So counterbalance: Have different subjects participate in different orders

Example 1

- What kind of design did they use?
 - Probably *mixed*:
 - Hormone between, picture type within
 - To manipulate hormone within, you’d need to:
 - Counterbalance the order of sessions
 - Develop two complete sets of pictures
Example 2

- Independent variable(s)?
 - Virtual scene type (alcohol vs. neutral)
- Dependent variable(s)?
 - Level of craving

Example 3

- Question: Which are more aggressive, boys or girls?
- Can we answer this with an experiment?
 - No: Can’t manipulate a child’s sex
 - The design has to be a quasi-experiment
 • Like a between-subjects design, but groups are intact
 • Have to be especially concerned about confounds

External validity

- A study has good *external validity* if it reflects the world as it is
 - In terms of participants, materials, and procedure
 - Let’s us conclude that the results apply to situations we care about
- Example 2:
 - Claim was that external validity was high because they used virtual reality and smells

Defining a variable

- Definition should be *operational*
 - There are specific rules for measuring it
 - *E.g.*, Rules for measuring aggression
- Definition should have *construct validity*
 - The variable should measure the construct you’re interested in
 - *E.g.*, Do we count playful acts that only *simulate* aggression?