Methods
Memory and Studying

Operationalizing aggression
• Could have kids report their aggression level
 — Have to control demand characteristics
 • When participants perceive the situation as “demanding” a particular kind of behavior
 • Boys may think it’s good to be aggressive
• Could have an observer count aggressive acts
 — Have to watch for observer bias
 • Observers may expect boys to be more aggressive

Hypothetical results
• Hypothetical aggression scores for 32 boys and 32 girls (higher is more aggressive):
 − Boys = 17.6
 − Girls = 13.5
• Can you conclude, based on this difference alone, that boys are more aggressive?
 − No: need to consider the variability in aggression scores within each group

Inferential statistics
• The larger the difference in means, relative to the variability within conditions, the lower the probability p that the difference occurred by random chance
• A difference in means is statistically significant if p is below a threshold
 − By convention, threshold is .05 (or 5%)
 − E.g., “the difference in mean aggression scores was significant, F(1,30)=6.5, p<.05”.

Variability
Figure 1.9 (from the book)
Same means, lower variability

Was this an experiment?
Was this an experiment?

[tex]
9/6/19

[link]
msutoday.msu.edu/news/2014/want-a-higher-gpa-in-college-join-a-gym/
Was this an experiment?

Correlational studies

- Correlation: two variables changing together
- **Correlation is not causation**
 - We don’t know the direction of causation
 - We don’t know whether there’s a **third variable**
- What is the direction of causation?
 - more loneliness→ less independence, or
 - less independence → more loneliness?
 - Another example: *Larger parietal cortex, higher IQ*

Correlational studies

- What’s a possible **third variable**?
 - Smart people could have high GPAs and know they should exercise
 - *Drowning deaths and ice-cream consumption*
- To establish causation, it helps to identify a **mechanism** linking the variables
 - Smoking and cancer
 - Greenhouse gasses and global warming

Methods: What we covered

- Research designs: Observational, experimental
- Characteristics of experimental designs:
 - There is some kind of manipulation
 - Can be between participants or within participants
 - Variables: Independent, dependent, confounding
 - Variables have to be operationally defined
 - There are types of validity: Internal, external, construct
 - Given variability in data, we need **inferential statistics**

Memory and studying

Testing effect

(Karpicke & Roediger, 2008, *Science*)

- Questions:
 - Can testing help you retain material?
 - How well can we predict our own test performance?
Method

• Materials: 40 Swahili-English word pairs
 – E.g., mashua → boat
 – Called paired associates (or just “items”)
• Procedure:
 1. Learning phase, all in one day
 2. Immediately after learning: Judgment of learning
 3. One week later: Final test

Learning phase

• 8 periods: S T S T S T S T
 – S = study period, T = test period
 – 30 sec of distracting activity after each S

	S	T	S	T	...
mashua	boat	mashua			

Variables

• Independent variables:
 – Items studied (all vs. nonrecalled)
 – Items tested (all vs. nonrecalled)
 – Manipulated between participants
• Dependent variables:
 – Judgment of learning
 – Proportion recalled on final test

Conditions

Four between-subjects conditions:

ST:
 Studied all 40 items in every S
 Tested on all 40 items in every T
SnTn:
 If you recalled an item in a T,
 it was dropped from all later Ss and Ts
 [n = non-recalled only]

Judgment of learning

• After the learning phase, each participant predicted how many items he or she would recall in a week
 – Average predicted number (out of 40):
 • ST: 20.8
 • SnTn: 20.3
 • SnTn: 20.4
 • SnTn: 22.0
 – I.e., predicted recall was about .5 (proportion)
 – No significant differences between conditions
Recall after a week

Results

- Testing helped retention
 - A lot
 - With these materials
 - And with this sample
 - Just studying more doesn’t help
- Participants couldn’t predict this effect
 - Not reflected in judgments of learning
 - What people tell you isn’t always accurate!

External validity

- Replicates with more complex materials and more realistic tests
 - Typing out a summary of a scientific text is better than doing a concept map (Karpicke & Blunt, 2011)
- Testing material enhances memory for related material (Chan, McDermott, & Roediger, 2006)
 - Important, because we usually don’t know exactly what will be on the test

Evidence-based study tips

- Self-test while you’re studying
- Space out your studying over time
 - Another effect: the spacing effect
 - A given amount of time spent studying helps more for long-term learning if you spread it out in time