Final paper

- Goal: Gain some experience thinking about:
 - a research question
 - experimental design and variables
- Pick a study from the list (or suggest another)
- Modify it to address a new question
 - Why is the new question interesting to you?
 - How does the method need to differ to address the new question?

Exam 1

- Will cover Chapters 1 and 3 to 6
 - “Basic learning mechanisms” from today will be on Exam 2, not Exam 1
- Format:
 - 32 multiple choice (1 point each)
 - 6 short answer (points vary)

Multiple-choice questions

- 32 total
 - 19 on material discussed in class in book
 - 4 book-only
 - 9 class-only

Multiple-choice questions

- Distribution of class-and-book questions:

<table>
<thead>
<tr>
<th>Chapter</th>
<th># of questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Total:</td>
<td>19</td>
</tr>
</tbody>
</table>

Multiple-choice questions

- 4 book-only questions:
 - Reliability vs. validity
 - General function of sympathetic, parasympathetic, and somatic nervous systems
 - Signal detection: Sensitivity vs. response criterion
 - Neural activity as a measure of consciousness (Fig. 6.9)

Multiple-choice questions

- 9 class-only questions:
 - Types of research in MSU psych department
 - Relative size of association areas across species
 - Location of face area
 - How a neuron increases its signal strength
 - Response of retinal ganglion cells to dim, bright, and split illumination (2 questions)
 - Stroop effect
 - Bottom-up factors in selective attention
 - Sensemaking process
Short-answer questions

- 3 questions on Karpicke and Roediger (2008)
 - Know the method and results at the level described in the lecture notes
- Draw a corner of the impossible triangle
- Be able to reconstruct the “toad + stool” example from *Severed Corpus Callosum*
- Be able to label cortical lobes, the primary sensory and motor areas of cortex, and CNS “stick figure” from Sept. 11 class
 - Sensory areas: visual, auditory, somatosensory

Basic learning mechanisms

Will be tested on Exam 2, not Exam 1

Learning

- Organisms have to adapt to their environment
- For all animals, this involves:
 - Habituation and dishabituation
 - Conditioning: classical and instrumental
 - Focus of today’s class
- For people this also involves:
 - Observational learning, skill learning, conceptual learning, ...

Conditioning

- Learning associations from
 - A stimulus to a response (classical/Pavlovian)
 - A response to a stimulus (instrumental/operant)
- Important distinctions:
 - A stimulus is part of the environment
 - Bell ringing, smell of food, ...
 - A response is part of the organism
 - Motor action, a thought or emotion, a physiological change, ...

Classical conditioning

- Unconditioned stimulus (US):
 - A stimulus that elicits a response before learning
 - “Unconditioned” means “before learning”
- Unconditioned response (UR):
 - The response elicited by the US before learning

Classical conditioning

- Conditioned stimulus (CS):
 - Initially neutral (elicits no response)
 - Elicits a response after learning
 - Learning involves repeated pairing of CS and US
 - The organism learns that the CS predicts the US
- Conditioned response (CR):
 - The response elicited by the CS after learning
 - May resemble UR, but may not
Example: Little Albert

- US?
 - Clang
- UR?
 - Cry
- CS?
 - Rat
- CR?
 - Cry

- Here, the UR and CR are the same
- Other furry animals could act as the CS
 - Though maybe not as strongly
 - Stimulus generalization

Example:

- US?
 - Smell/sight of food
- UR?
 - Eat
- CS?
 - Sound of can opener
- CR?
 - Approach the can

Example: Dentist

- US?
 - Needle poke
- UR?
 - Flinch
- CS?
 - Sight of needle
- CR?
 - Hold still, to prevent the flinch

Homeostasis

- Stability in body state maintained through self-regulation
 - Control centers in the brain detect deviations in temperature, glucose levels, etc.
 - Deviations trigger internal adjustments or behaviors that restore the target level
- Basis for the homeostatic model of drug tolerance
 - Which assumes classical conditioning

Homeostatic model

- US:
 - Heroin
- UR:
 - Relaxed state, dry mouth
- CS?
 - Sights and sounds of the context where the user usually uses
- CR?
 - Neural and hormonal responses to maintain homeostasis
 - In absence of drug, produces agitated state, salivation

(“Wetter” and “drier” may be reversed in Fig. 7.15.)