Basic learning mechanisms

Will be tested on Exam 2, not Exam 1

Learning

• Organisms have to adapt to their environment
• For all animals, this involves:
 – Habituation and dishabituation
 – Conditioning: classical and instrumental
• For people this also involves:
 – Observational learning, skill learning, conceptual learning, ...

Behaviorism and learning

• Behaviorism: a movement that dominated psychology from 1920s-1950s
• Assumptions:
 – Behavior was the only valid target of study
 • Mental processes were not
 • Introspection had recently failed as a scientific method
 – Complex behavior could emerge from simple initial behavior plus learning

Behaviorist manifesto

“Give me a dozen healthy infants, well-formed, and my own specified world to bring them up in and I’ll guarantee to take any one at random and train him to become any type of specialist I might select - doctor, lawyer, artist, merchantchief, and yes, even beggar-man and thief, regardless of his talents, penchant, tendencies, abilities, vocations, and the race of his ancestors” (From Behaviorism, by John Watson, 1924)

Conditioning

• Learning associations from
 – A stimulus to a response (classical/Pavlovian)
 – A response to a stimulus (instrumental/operant)
• Important distinctions:
 – A stimulus is part of the environment
 • Bell ringing, smell of food, ...
 – A response is part of the organism
 • Motor action, a thought or emotion, a physiological change, ...

Classical conditioning

• Unconditioned stimulus (US):
 – A stimulus that elicits a response before learning
• Unconditioned response (UR):
 – The response elicited by the US before learning
Classical conditioning

- Conditioned stimulus (CS):
 - Initially neutral (elicits no response)
 - Elicits a response after learning
 - Learning involves repeated pairing of CS and US
 - The organism learns that the CS predicts the US

- Conditioned response (CR):
 - The response elicited by the CS after learning
 - May resemble UR, but may not

Example: Little Albert

- US?
 - Clang
- UR?
 - Cry
- CS?
 - Rat
- CR?
 - Cry
- CR = UR, in this case

Stimulus generalization:
 - Other furry animals could act as CS
 - Maybe not as strongly

Role of predictiveness

- Learning requires that the CS predicts the US
 - After learning, the organism uses the CS as a signal to prepare for the US
 - The preparation involves the CR

Example

- US?
 - Smell/sight of food
- UR?
 - Eat
- CS?
 - Sound of can opener
- CR?
 - Approach the can

Example: Dentist

- US?
 - Needle poke
- UR?
 - Flinch
- CS?
 - Sight of needle
- CR?
 - Hold still, to prevent the flinch

Homeostasis

- Stability in body state maintained through self-regulation
 - Control centers in the brain detect deviations in temperature, glucose levels, etc.
 - Centers then trigger internal adjustments or behaviors that restore the target level

- Basis for the homeostatic model of drug tolerance
 - Which assumes classical conditioning
Homeostatic model

- **US**: Heroin
- **UR**: Relaxed state, dry mouth
- **CS?**: Sights and sounds of the context where the user usually uses
- **CR?**: Neural and hormonal responses to maintain homeostasis
 - In absence of drug, produces agitated state, salivation

("Wetter" and "drier" may be reversed in Fig. 7.15.)

Instrumental conditioning

Initial trials:
- Reinforcer

Later trials:
- Reinforcer

Instrumental conditioning

- **Response**: Some action by organism
- **Reinforcement**: A stimulus delivered after response to make that response more likely
- **Shaping**: Reinforcing behaviors that are increasingly similar to the desired response

Example

- **Cat**:
 - **Response?**
 - Jump in tub
 - **Reinforcement?**
 - Water
 - **Shaping?**
 - Reinforce going into bathroom, then reinforce jumping on tub deck

- **Dad**:
 - **Response?**
 - Turn on water
 - **Reinforcement?**
 - Adorable cat behavior

Classical interpretation

- **US?**
 - Water
- **UR?**
 - Drink
- **CS?**
 - Dad in bathroom
- **CR?**
 - Jump in tub
Conditioning can produce complex behavior

Exam

• Extra office hours:
 – Wednesday 10/5, 1pm-3pm
• Will cover Chapters 1, 3-6
 – For exclusions, see slides from last class
• Format:
 – 32 multiple choice (1 point each)
 – 6 short answer (points vary)

Short-answer questions

• 3 questions on Karpicke and Roediger (2008)
 – Know the method and results at the level described in the lecture notes
• Draw a corner of the impossible triangle
• Be able to reconstruct the “toad + stool” example from Severed Corpus Callosum
• Be able to label cortical lobes, the primary sensory and motor areas of cortex, and CNS “stick figure” from Sept. 13 class
 – Sensory: visual, auditory, somatosensory