Methods

Methods: What we’ll cover

- Research designs: Experimental, observational
 - Experimental designs:
 - Defining characteristic: A manipulation
 - Variables: Independent, dependent, confounding
 - Manipulations: between- vs. within-participants
 - Validity: Internal, external, construct
 - Defining a variable: operational definitions
 - Variability in data and inferential statistics
 - Observational designs:
 - Quasi-experiments, correlational studies

Research designs

- Two broad classes
 - Observational
 - Researcher studies the world as it is (more or less)
 - Quasi-experiments, correlational studies, case studies
 - Experimental
 - Researcher manipulates the world, somehow
 - Then measures the effects of the manipulation

An experiment

- An experiment involves a manipulation
 - If you can identify a manipulation, the design is an experiment. If you can’t, it isn’t
 - Researcher manipulates the independent variable, creating different conditions
 - Ideally, the conditions should match on all variables other than the manipulated one
 - Measures effects of the manipulation on the dependent variable, by comparing conditions

Elements of an experiment

- A variable: Something whose value can change
 - Light exposure, rape survivor decisions, family environment, amount of practice, …
- Independent variable: What you manipulate
 - Each value is a level, helps define a condition
 - If there are two independent variables, each with two levels, how many conditions?
 - $2 \times 2 = 4$
- Dependent variable: What you measure
 - “Depends” on the independent variable

Elements of an experiment

- Confounding variable: A variable that doesn’t match across groups
 - … and isn’t an independent variable
 - A good design has as few confounds as possible
Example 1

- Independent variable(s)?
 - Hormone (levels: ghrelin vs. control)
 - Picture type (levels: food vs. non-food)
- Conditions:
 - ghrelin-food, ghrelin-nonfood, control-food, control-nonfood
- Dependent variable(s)?
 - Brain activation while looking at pictures
 - Memory for the pictures after seeing them

Example 1

- Possible confounding variables?
 - Suppose only the ghrelin group got an injection
 - The injection itself could affect appetite
 - So give a sham dose to control group
 - Suppose the groups were run at different times
 - Control group @ 10am
 - Ghrelin group @ 11am
 - Ghrelin group may be growly before lunch
 - Have to control for time of day

Internal validity

- An experiment has good internal validity if there are no obvious confounding variables
 - Conditions are as closely matched as possible at the start of the experiment
 - So you can conclude that the manipulated variable caused any condition differences

Two types of manipulations

- Between participants
 - Each participant participates in only one level
 - Participants are randomly assigned to levels
- Within participants
 - Each participant participates in all levels
 - Each design matches levels in different ways
 - And has different strengths and weaknesses

Between-participants manipulation

- Participants are randomly assigned to levels
 - For each participant, flip a coin
- Random assignment helps cancel differences
 - Suppose Alice shows up at the experiment hungry
 - With random assignment, each condition should have roughly equal numbers of hungry people
 - If the sample is large enough

Within-participants manipulation

- Each participant participates in all levels
 - So in one sense, the levels are perfectly matched
- But participating in one level may change that person for the other levels
 - E.g., they’ve already seen the pictures once
 - So need different sets of stimuli
 - E.g., an injection your first visit to the lab may change your attitude toward the second
 - So counterbalance: Different participants experience the levels in different orders
Example 1
• They may have used a mixed design
 – Hormone between participants
 – Picture type within participants

Example 2
• Independent variable(s)?
 – Virtual scene type (alcohol vs. neutral)
• Dependent variable(s)?
 – Level of craving

External validity
• A study has good *external validity* if it reflects the world as it is
 – In terms of participants, materials, and procedure
 – Let us conclude that the results apply to situations we care about
• Example 2:
 – Claim was that external validity was high because they used virtual reality and smells

Example 3
• Question: Which are more aggressive, boys or girls?
• Can we answer this with an experiment?
 – No: Can’t manipulate a child’s sex
 – The design has to be a *quasi-experiment*
 • Like a between participants design, but groups are intact
 • Have to be especially concerned about confounds

Defining a variable
• Definition should be *operational*
 – There are specific rules for measuring it