Chapter 16
One-way Analysis of Variance
PSY 295 – Oswald

Major Points
• An example
• The logic
• Calculations
 – Unequal sample sizes
• Multiple comparisons
 – Fisher’s LSD
 – Bonferron t

Major Points
• Assumptions of analysis of variance
• Magnitude of effect
 – eta squared
 – omega squared
 – d
• Review questions

Logic of the Analysis of Variance
• Null hypothesis H_0: Population means
 $\mu_1 = \mu_2 = \mu_3 = \mu_4$
• Alternative hypothesis: H_1
 –
 $\mu_1 > \mu_2 = \mu_3 = \mu_4$ OR $\mu_1 > \mu_2 = \mu_3 = \mu_4$
 OR $\mu_1 = \mu_2 = \mu_3 < \mu_4$ OR $\mu_1 > \mu_2 > \mu_3 = \mu_4$
 – etc.
Logic

• Create a measure of variability
 – MS\(_{\text{groups}}\)
• Create a measure of variability
 – MS\(_{\text{error}}\)

Logic

• Form ratio of \(\frac{MS_{\text{groups}}}{MS_{\text{error}}}\)
 – Ratio if null true
 – Ratio if null false
 – “approximately 1” can actually be as high as

Epinephrine and Memory

• Based on Introini-Collison & McGaugh (1986)
 – Trained mice to go on \(\text{Y}\) maze
 – Injected with 0, .1, .3, or 1.0 mg/kg epinephrine
 – Next day trained to go in same \(\text{Y}\) maze
 – dep. Var. =
 • indicates better retention of Day 1
 • Reflects epinephrine’s effect on memory

<table>
<thead>
<tr>
<th>Dosage ((\mu)g/kg)</th>
<th>0.0</th>
<th>0.1</th>
<th>0.3</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Mean

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.1</th>
<th>0.3</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>3.22</td>
<td>4.50</td>
<td>5.50</td>
<td>1.89</td>
</tr>
<tr>
<td>St. Dev.</td>
<td>1.20</td>
<td>1.29</td>
<td>1.13</td>
<td>1.88</td>
</tr>
</tbody>
</table>

Grand mean = 3.78
Chapter 16 One-way Analysis of Variance

Calculations

- Start with Sum of Squares (SS)
 - We need:
 - S_{total}
 - S_{groups}
 - S_{error}
- Compute degrees of freedom (df)
- Compute

Summary Table

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>3</td>
<td>132.556</td>
<td>44.185</td>
<td>35.816*</td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>83.889</td>
<td>1.234</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $p < .05$
Conclusions

• The F for groups
 − We would obtain an F of this size, less than one time out of 1000 (.001).
 − The difference in group means
 − The number of trials to learn reversal

Conclusions

• The injection of epinephrine following learning appears to that learning.
• High doses may have effect.

Unequal Sample Sizes

• With one-way, no particular problem
 − by appropriate n_i as you go
 − The problem is more complex with more complex designs.
• Example from Foa, Rothbaum, Riggs, & Murdock (1991)

Post-Traumatic Stress Disorder

• Four treatment groups given psychotherapy
 ◆ Stress Inoculation Therapy (SIT)
 ◆ Standard techniques for handling stress
 ◆ Prolonged exposure (PE)
 ◆ Reviewed the event repeatedly in their mind
 ◆ Supportive counseling (SC)
 ◆ Standard counseling
 ◆ Waiting List Control (WL)
 ◆ No treatment
Chapter 16 One-way Analysis of Variance

Tentative Conclusions

- Fewer symptoms with SIT and PE than with other two
- Also within treatment groups
- Is just a reflection of variability of individuals?

Calculations

- Almost the same as earlier
 - Note differences
- We multiply by n_j as we go along.
- MS_{error} is now a .

<table>
<thead>
<tr>
<th>SIT</th>
<th>PE</th>
<th>SC</th>
<th>WL</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>13</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>34</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>21</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>30</td>
<td>27</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>34</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>27</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

Mean = 11.071 15.400 18.091 19.500

St. Dev. 3.951 11.118 7.134 7.106

Grand mean = 15.622

Calculations--cont.

\[
SS_{\text{total}} = \Sigma (X - \overline{X})^2 = (3-15.62)^2 + (13-15.62)^2 + \ldots + (13-15.62)^2
\]
\[
= 2786.6
\]

\[
SS_{\text{groups}} = \Sigma n_j (\overline{X}_j - \overline{X})^2
\]
\[
= \left[14(11.071-15.62)^2 + 10(11.118-15.62)^2 + \ldots + 10(19.500-15.62)^2 \right]
\]
\[
= 507.8
\]

\[
SS_{\text{error}} = SS_{\text{total}} - SS_{\text{groups}} = 2786.6 - 507.8
\]
\[
= 2278.8
\]
Summary Table

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>3</td>
<td>507.8</td>
<td>169.3</td>
<td>3.05*</td>
</tr>
<tr>
<td>Error</td>
<td>41</td>
<td>2278.7</td>
<td>55.3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>2786.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* p < .05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[F_{0.05}(3,41) = 2.84 \]

Conclusions

- \(F \) is significant
- The population means
- In general
 - \(SIT \) most effective.

Multiple Comparisons

- Significant \(F \) only shows that not all groups are equal
 - We want to know which are different.
- Such procedures are designed to control familywise error rate.
 - defined
 - Contrast with error rate

More on Error Rates

- Most tests use a significance level (\(\alpha \)) for each \(t \) test.
- The more likely we are to make Type I error.
 - Good reason to
Fisher’s LSD Procedure

- Requires significant overall F, or no tests
- Run standard t tests between pairs of groups.
 - Often we replace s^2_j, or pooled estimate with MS_{error} from overall analysis
 - It is really just a pooled error term, but with -pooled across all treatment groups.

Bonferroni t-test

- Run t tests between , as usual
 - Hold down number of t tests
 - Reject if t exceeds critical value in Bonferroni table
- Works by using a more for each comparison

Bonferroni t-test

- Critical value of α for each test set at , where $c = \text{number of tests run}$
 - Assuming familywise
 - e.g. with 3 tests, each t must be significant at level.
- Make sure calculated probability <
- Necessary table is in the book

Assumptions for ANOVA

- Assume:
 - Observations within each population
 - Population variances are of variance or homoscedasticity
 - Observations are
Assumptions

• Analysis of variance is generally
 – A robust test is one that is not greatly affected by
 of assumptions.

Magnitude of Effect

• Eta squared (η^2)
 – Easy to calculate
 – on the high side
 – Formula follows...
 – Percent of variation in the data that can be attributed to

$\eta^2 = \frac{SS_{\text{groups}}}{SS_{\text{total}}} = \frac{507.8}{2786.6} = .18$

$\omega^2 = \frac{SS_{\text{groups}} - (k-1)MS_{\text{error}}}{SS_{\text{total}} + MS_{\text{error}}} = \frac{507.8 - 3(55.6)}{2786.6 + 55.6} = .12$

• $\eta^2 = .18$: 18% of variability in symptoms can be accounted for by treatment
• $\omega^2 = .12$: This is a less biased estimate, and note that it is 33% smaller.

Magnitude of Effect

• Omega squared (ω^2)
 – Much than η^2
 – Not as intuitive
 – We both numerator and denominator with MS_{error}
 – Formula on next slide
Other Measures of Effect Size

- We can use the same kinds of measures we talked about with t tests.
- Usually makes most sense to talk about η^2, rather than a measure averaged over several groups.

Review Questions

(For review – these are NOT the only things to know)

- Why is it called the analysis of “variance” and not the analysis of “means”?
- What do we compare to create our test?
- Why would large values of F lead to rejection of H_0?
- What do we do differently with unequal n's?

- What is the per comparison error rate?
- Why would the familywise error rate generally be larger than .05 unless it is controlled?
- Most instructors hate Fisher’s LSD. Can you guess why?
 – Why should they not hate it?

- How does the Bonferroni test work?
- What assumptions does the analysis of variance require?
- What does “robust test” mean?
- What do we mean by “magnitude of effect”?
- What do you know if η^2 is .60?
Review Questions
(For review – these are NOT the only things to know)

• Why would we calculate effect size measures on only pairs of groups at a time?