Chapter 5
Measures of Variability
PSY 295 – Oswald

Outline
• The general problem
• Range and related statistics
• Deviation scores
• The variance and standard deviation
• Boxplots
• Thought questions

The General Problem
• Remember that central tendency (mean, median, mode)
• Does the center represent ?
 • modal # of cars owned
 • average level of extraversion
• Dispersion around the center helps us know
 – around something
 –

Variation
• Variability - The extent numbers in a data set are
• When all elements measured receive the same scores (e.g., everyone in the data set has the same age, in years), there is
 • e.g., Quality control =
 • As the scores in a data set become more dissimilar

Variation
\[X - \bar{X} \]
<table>
<thead>
<tr>
<th>X</th>
<th>5</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
\[\sum X = 25 \quad n = 5 \quad \bar{X} \cdot 5 \]

Variation
\[X - \bar{X} \]
<table>
<thead>
<tr>
<th>X</th>
<th>6</th>
<th>+1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+1.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1.00</td>
<td></td>
</tr>
</tbody>
</table>
\[\sum X = 25 \quad n = 5 \quad \bar{X} \cdot 5 \]
Chapter 5 Measures of Variability

Variation

\[
\bar{X} = \frac{\sum X}{n}
\]

<table>
<thead>
<tr>
<th>X</th>
<th>(X - \bar{X})</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>+3.00</td>
</tr>
<tr>
<td>1</td>
<td>-4.00</td>
</tr>
<tr>
<td>9</td>
<td>+4.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>-3.00</td>
</tr>
</tbody>
</table>

\[\sum X = 25\quad n = 5\quad \bar{X} = 5\]

Avg. Deviation from the Mean?

• Let’s say we wanted to figure out the average deviation from the mean. You could

\[
\frac{\sum (X - \bar{X})}{N}
\]

• BUT We have a problem. This number will always (by definition of what a mean is)

Range and Related Statistics

• The range
 – Distance from
 – Very of variability – by extremes
 – Example: The youngest student in a class is 19 and the oldest is 46.

Range and Related Statistics

• The interquartile range (IQR)
 – Delete
 – IQR is range of what remains
 – May be

Trimmed Samples

• Delete of extreme scores
• Trimmed statistics are
Deviation Scores

- Definition
 - distance between an individual score and the # representing the center of the distribution
 - usually
 $$(X - \bar{X})$$
- Importance

Estimators

- Mean
 - is an unbiased estimate of population mean
- Define unbiased
 - Long range average of statistic is equal to

Estimators

- Variance
 - Is of σ^2
 - Using N instead of σ^2 would be
 - Take square root of this estimate for , the standard deviation

Estimators

- Standard deviation
 - Square root of the of the variance
 - Easier to define than variance – variance deals with squared scores but the standard deviation is
 - Standard = , deviation =

Relationship Between Population and Sample

Variance

- Definitional formula
 - Population
 - Sample
Chapter 5 Measures of Variability

Calculation

\[
\begin{array}{cccccc}
X & 2 & 4 & 5 & 8 & 7 & 4 \\
(X - \bar{X}) & -3 & -1 & 0 & 3 & 2 & -1 \\
(X - \bar{X})^2 & 9 & 1 & 0 & 9 & 4 & 1 \\
\sum & 30 & & & & & \\
\end{array}
\]

\[s^2 = \frac{\sum (X - \bar{X})^2}{N - 1} = \]

\[\bar{X} = 5\]

Standard Deviation

- **Definitional formula**
 - The square root of the variance
 \[s = \sqrt{s^2} = \sqrt{\frac{\sum (X - \bar{X})^2}{N - 1}}\]
 - Why do this?
 - Why not just take the difference and ?

Computational Formula

The definitional formula is for
\[s^2 = \frac{\sum (X - \bar{X})^2}{N - 1}\]

...but it's the same as the computational formula which is
\[s^2 = \frac{\sum X^2 - (\sum X)^2}{N - 1}\]

which is often

Example w/ Computational Formula

- Always create a table that looks like this

<table>
<thead>
<tr>
<th>X</th>
<th>X^2</th>
<th>X</th>
<th>X^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>X_1^2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>X_2</td>
<td>X_2^2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>X_3</td>
<td>X_3^2</td>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>X_4</td>
<td>X_4^2</td>
<td>9</td>
<td>81</td>
</tr>
</tbody>
</table>

\[\sum X = \sum X^2 = \]

Computing Standard Deviation

- Values from the table are then entered into the formula as follows:

\[s^2 = \frac{\sum X^2 - (\sum X)^2}{N - 1}\]

\[s = \sqrt{\frac{\sum X^2 - (\sum X)^2}{N - 1}}\]

- Voila! (…and how would you get the variance?)

\[\sum X^2 = \]

\[\sum (X)^2 = \]
Get this down to a single #:

\[
s = \sqrt{\frac{(150-121)}{3}} \quad \Rightarrow \quad s = \sqrt{\frac{29}{3}}
\]

\[
s = \sqrt{9.6667} \quad \Rightarrow \quad s = 3.1091 \quad \Rightarrow \quad s = 3.11
\]

Degrees of Freedom

- Degrees of Freedom: The number of in a data set – or, the number of observations that are free to vary.

- For example, say there are 5 numbers that total 25 \(\sum x = 25, n = 5 \)
- Many combinations of numbers can total 25, can be any value
- The 5th number cannot vary if you make \(\sum x = 25 \)
- So here you have , because the five numbers are free to vary

Using for the variance and standard deviation (versus using N) gives us of the population variance and standard deviation.
- The , the more this will make a difference (e.g., when \(N=2 \) than when \(N=20,000 \)).

Why is Standard Deviation so Important?

- What does the standard deviation really tell us?
- Why would a sample’s standard deviation be small?
- Why would a sample’s standard deviation be large?

An Example

- You’re sitting in the student union with 4 of your friends. A student walks by, and being the superficial scientists you are, you and your friends view the student for about 2 seconds, and you rate this person’s “charisma” on a scale from 1 to 10 (where 1=not at all appealing and 10=very appealing)
Food for thought

1) What would it mean if all six of you rated this person a 9 out of 10?
2) What would it mean if all six of you rated this person a 5 out of 10?
3) What would it mean if the five of you produced the following ratings: 2, 4, 5, 8, 7, 4 (note that the mean rating would be 5)?

Why would scenario #3 happen instead of scenario #2? What factors would lead to these different ratings?

These questions form the basis of why

Computational Formula

\[s^2 = \frac{\sum X^2 - \left(\frac{\sum X}{N}\right)^2}{N-1} = \frac{2^2 + 4^2 + 5^2 + 7^2 + 4^2 - 30^2}{6} = 4.80 \]

\[s = \sqrt{\frac{\sum X^2 - \left(\frac{\sum X}{N}\right)^2}{N-1}} = \sqrt{4.8} = 2.19 \]

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Results

- took much longer to run on average (higher mean)
- Much greater
 - See following graphs for Anthrax and Mozart
 - Both X axes

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.

Example: Mice and Music

- Study by David Merrell
- Raised some mice in
- Raised some mice listening to
- Raised other mice listening
- Dependent variable is the after 4 weeks.
Merrell’s Music Study Printout

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiet</td>
<td>307.2319</td>
<td>23</td>
<td>71.8267</td>
</tr>
<tr>
<td>Mozart</td>
<td>114.5833</td>
<td>24</td>
<td>36.1017</td>
</tr>
<tr>
<td>Anthrax</td>
<td>1825.8889</td>
<td>24</td>
<td>103.1392</td>
</tr>
<tr>
<td>Total</td>
<td>755.4601</td>
<td>71</td>
<td>777.9646</td>
</tr>
</tbody>
</table>

Boxplots

- The general problem
 - A display that shows dispersion of distribution
- Calculation steps
 - Find median
 - Find top and bottom 25% points (quartiles)
 - Eliminate top and bottom 2.5% (fences)
 - Draw boxes to quartiles and whiskers to fences, with remaining points as outliers
- Boxplots for comparing groups

Thought Questions

(these are NOT the only questions you need to know for HW/Exams)

- What do we look for in a measure of dispersion?
- What role do play in considering the mean and variance?
- If scores are on a 1-5 scale, how would the variance change if the mean was 1.1 vs. if the mean was 3.3?
- Why do we take the to get the standard deviation?
- What types of things can we conclude from the mice/music data?)