Lecture 20: Start Program Evaluation

Outline

- Review
- Finish Factorial Design Example
- Issues with Experiments
- Program Evaluation

Review

- Finish Video Game Example
 - Effect Size Computation
- Internal Validity, Again
- Threats to Internal Validity (see also pages 245-252)
 - Selection
 - Maturation
 - Instrumentation
 - Attrition
Design 2: Pretest-Posttest Two-Group Design

Pretest → Treatment → Posttest (DV: Post - Pre)

Pretest → Control → Posttest (DV: Post - Pre)

Design 3: Solomon Four-Group

Pretest

Pretest

Treatment → Posttest

Control → Posttest

Treatment → “Posttest”

Control → “Posttest”

Design 4: Between-Participants Factorial Design

X1 + Z1 → Outcome (DV)

X1 + Z2 → Outcome (DV)

X2 + Z1 → Outcome (DV)

X2 + Z2 → Outcome (DV)
Basic Details

• Question: Do individuals evaluate the actual performances of attractive people more positively than those of unattractive people? (p. 300)

• Procedure: 60 male undergraduates read a short essay and then evaluated its overall quality. They used a 2 by 3 Factorial Design (Essay by Attractiveness)

Factorial Design: Between-Participants

Good + Control	Quality Rating
Good + Attractive	Quality Rating
Good + Unattractive	Quality Rating
Poor + Control	Quality Rating
Poor + Attractive	Quality Rating
Poor + Unattractive	Quality Rating

Ratings of General Essay Quality
Their Interpretations (p. 302)

• If you are [unattractive] you are not discriminated against a great deal as long as your performance is impressive. However, should performance be below par, attractiveness matters: You may be able to get away with inferior work if you are beautiful.

When to Use Lab Studies?

• First define the question as a universalistic or particularistic research question.
• Lab studies are well suited for universalistic questions.
• Questions about theoretically predicted associations between constructs.
• Significant Question: Can this effect be demonstrated at all?

Considerations of the Independent Variables

• Many interesting IVs cannot normally be manipulated (e.g., gender, intelligence)
• Many interesting IVs cannot be manipulated ethically (e.g., psychological effects of abuse, divorce)
• What is the time frame of the effect?
Manipulation is Crucial for an Experiment in the Laboratory

• Manipulating the Independent Variable ensures that everyone experiences similar levels of one variable under exactly the same conditions.
• One issue is how well the manipulation captures the precise psychological process that we care about.

How “real” is an experiment?

• **Mundane realism:** The extent to which an experiment is similar to real-life situations
 – Stanford Prison Experiment
 – Video Game Example
• **Psychological realism:** The extent to which the psychological processes triggered in an experiment are similar to psychological processes that occur in everyday life.

Types of Laboratory Studies

• Impact Studies: Something happens to participants.
• Judgment Studies: Participants are fairly passive. They make judgments about a stimulus or a set of stimuli.
• Observational Studies: Controlled setting for making observations. Not a strong emphasis on manipulation.
Program Evaluation

What is Program Evaluation?

• The use of social science methods to systematically investigate the effectiveness of social intervention programs.
• Focus on summative evaluation. Formative evaluation is where the goal is to help improve existing programs rather than making effectiveness judgments.

Rossi & Wright (1984, p. 341)

• “One of the most important lessons to be learned from all the evaluations initiated during the Golden Age [1960s and early 1970s] is that it is extremely difficult to design programs that produce noticeable effects in any desired direction.”
Lipsey & Wilson (1993)

• “Parade of Close-to-Zero effects” (Rossi & Wright, 1984, p. 342).
• “It is a distressing observation that … the results of treatment research and reviews of that research have not yielded convincing support for the efficacy of many psychological, educational, and behavioral treatments” (p. 1181).

• They used meta-analytic techniques to survey this vast literature
 – Collect all studies on a given topic and convert results to an effect size
 – Often a d statistic: \((\text{Mean of Treatment} – \text{Mean of Control}) \div \text{Pooled Standard Deviation}\)
 – Describe effect sizes
 – Basic idea: Draw Quantitative Conclusions from Entire Literature

General Conclusions

- Across studies there is evidence that well-developed programs seem to have some positive effects.
- “We thus believe that a strongly favorable conclusion about the efficacy of well-developed psychological treatment is justified by the results of meta-analytic investigation” (Lipsey & Wilson, 1993, p. 2000)
Surefire Paths to Success (p. 428)

- What to do if you want to see that your program works? Some ideas...rely on testimonials and capitalize on regression artifacts
- “Human courtesy and gratitude being what it is, the most dependable means of assuring a favorable evaluation is to use voluntary testimonials for those who have had the treatment” (p. 426)

Regression Toward the Mean

- Extreme Scores at one time are not likely to be as extreme on a second testing.
- (Reichardt, 1999, p. ix): Regression to the mean is as inevitable as death and taxes.
- Why? Two sets of scores are never perfectly correlated.
- Take the 32 people who scored 60 or worse on Exam 1. What was their average gain from Exam 1 to Exam 2? 10.55 points! What about those 37 people who scored 87 or better? What was their average difference? A loss of 4.39 points.

Psychological Treatments that Cause Harm

Lilienfeld (2007)
A Selected List of Potentially Harmful Therapies

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Potential Harm</th>
<th>Source of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Incident Stress Debriefing (CISD)</td>
<td>Heightened Risk for PTSD</td>
<td>Randomized Control Trials</td>
</tr>
<tr>
<td>Scared Straight Interventions</td>
<td>Exacerbation of Conduct Problems</td>
<td>Randomized Control Trials</td>
</tr>
<tr>
<td>DARE</td>
<td>Increased ATOD Use</td>
<td>Randomized Control Trials</td>
</tr>
<tr>
<td>Boot-camp Interventions</td>
<td>Exacerbation of Conduct Problems</td>
<td>Meta-Analysis</td>
</tr>
</tbody>
</table>