Overview

- Review of Classical Test Theory
- Standard Error of Measurement (SEM)
- Comparing SEM to Reliability
- Reliability vs. Agreement
- Agreement

Review of Classical Test Theory

Classical Test Theory – A refresher!

If an immortal person took test an infinite number of times, what would be the mean of the observed scores?

\[X = T + E, \]

T is the same every time you took it
E is random (sometimes +, sometimes -)
and would average out to zero, so…
average \[X = T \]
Standard Error of Measurement (SEM)

- ...but what would the standard deviation be?...

The Normal Curve of Error

$T = 10$

Review of Classical Test Theory

The Mysteries of SEM …Revealed!

$\text{standard error of measurement} = \text{SEM}$

standard deviation of the error around any individual's true score

±2 SEM captures 95% of the error

...you’d like SEM/error to be small

Why?

How?
Large SEM

The CAT (Creative Analogies Test) has 50 items. Most people score anywhere from 20 to 100.

Amy scores 75 on the CAT.
What if SEM = 10?
Then…
• 95% sure her true score is 55 – 95 (±2 SEM)

Small SEM

The CAT (Creative Analogies Test) has 50 items. Most people score anywhere from 20 to 100.

Amy scores 75 on the CAT.
What if SEM = 2?
Then…
• 95% sure her true score is 71 – 79 (±2 SEM)

It’s SEMtacular!

\[SEM = s_x \sqrt{1 - r_{xx}} \]

- \(s_x \) = SD of test scores
- \(r_{xx} \) = test reliability

- good reliability \(\rightarrow \) low SEM \(SEM = 10 \sqrt{1 - .84} = 4 \)
- poor reliability \(\rightarrow \) high SEM \(SEM = 10 \sqrt{1 - .19} = 9 \)
SEM Example

Say you have a test where
mean = 50, \(s_x = 10 \) and \(r_{xx} = .84 \)

\[
SEM = 10 \sqrt{1-.84} = 4
\]

Fred scores 35 on this test, which means

• 95% sure his true score is 27 – 43 (±2 SEM)
• 68% sure his true score is 36 – 44 (±1 SEM)

SEM Assumptions

\[
SEM = s_x \sqrt{1-r_{xx}}
\]

• a reliability coefficient based on an appropriate measure
• the sample appropriately represents the population

Use of Cut Scores

• Cut scores are set values on a test that determines who passes and who fails the test.
 – Commonly used for licensure or certification (bar exam, medical licensure, civil service)

• What is the impact of the SEM on interpreting cut scores?
Some general rules about reliability

• Bigger is better!
 – The more items, the more occasions, and the more observers the better the reliability
• The Spearman-Brown Prophesy formula gives us the reliability of a test if the number of (similar) items is increased
• Need to compute the standard error of measurement to understand individual test scores
• A measure can not be valid if it isn’t reliable

Reliability vs. Agreement

Example 1 - Interrater Agreement

Example
Brutus and Maureen are clinical psychologists. They independently conduct intake interviews for 200 clients presenting mood problems.
(Ex. 1, cont.) Assigned Categories

Clients assigned to 1 of 3 categories
- Cyclothymic
- Bipolar
- Depressed

Why would you think/hope the therapists agree?

(Ex. 1, cont.) Assignments

<table>
<thead>
<tr>
<th></th>
<th>Maureen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cyclo</td>
<td>bipo</td>
</tr>
<tr>
<td>Brutus</td>
<td>cyclo</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>bipo</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>depr</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>130</td>
</tr>
</tbody>
</table>

(Ex. 1, cont.) Convert # to Proportions

<table>
<thead>
<tr>
<th></th>
<th>Maureen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cyclo</td>
<td>bipo</td>
</tr>
<tr>
<td>Brutus</td>
<td>cyclo</td>
<td>.53</td>
</tr>
<tr>
<td></td>
<td>bipo</td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td>depr</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>.65</td>
</tr>
</tbody>
</table>

.53+.14+.03 = 70% interrater agreement
Example 2:
Brutus and Maureen: Bogus Clinicians

What if Brutus and Maureen were actors, just pretending to be clinical psychologists as a sick little drama class project?

In other words, what if Brutus and Maureen had NO IDEA WHAT THEY WERE DOING, and all their "diagnoses" were COMPLETELY DUE TO CHANCE?

(Ex. 2, cont.) Frequencies

<table>
<thead>
<tr>
<th></th>
<th>Maureen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cyclo</td>
</tr>
<tr>
<td>Brutus</td>
<td>22</td>
</tr>
<tr>
<td>cyclo</td>
<td>23</td>
</tr>
<tr>
<td>bipo</td>
<td>22</td>
</tr>
<tr>
<td>depr</td>
<td>67</td>
</tr>
</tbody>
</table>

(Ex. 2, cont.) Proportions

<table>
<thead>
<tr>
<th>Proportions (=cell freq/200)</th>
<th>Maureen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cyclo</td>
</tr>
<tr>
<td>Brutus</td>
<td>.11</td>
</tr>
<tr>
<td>cyclo</td>
<td>.11</td>
</tr>
<tr>
<td>bipo</td>
<td>.11</td>
</tr>
<tr>
<td>depr</td>
<td>.33</td>
</tr>
</tbody>
</table>

.11+.11+.11 = 33 % interrater agreement just by chance
Wait a sec…

Two people could agree just by chance, right? (e.g., 2 people flippin’ coins)

(1) By how much do ratings beat chance agreement?

(2) What’s the MOST the ratings could beat chance by?

Kappa Coefficient

How Much Above Chance Agreement?

\[\kappa = \frac{P_{\text{obs}} - P_{\text{chance}}}{1 - P_{\text{chance}}} \]

The amount above chance you do have agreement on.

\[\text{The maximum amount beyond chance you could have agreement on.} \]

Proportions (\(=\text{cell freq}/200\))

<table>
<thead>
<tr>
<th></th>
<th>Maureen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cyclo</td>
</tr>
<tr>
<td>Brutus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td>.33</td>
</tr>
</tbody>
</table>

.11+.11+.11 = 33 % interrater agreement *just by chance*
Example 3: What if a pregnancy test was claimed to be "98% effective"?

Say you had the following data on 1000 women...

<table>
<thead>
<tr>
<th>Pregnancy Test</th>
<th>preg</th>
<th>no preg</th>
</tr>
</thead>
<tbody>
<tr>
<td>preg</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>no preg</td>
<td>20</td>
<td>960</td>
</tr>
</tbody>
</table>

98% effectiveness

\[\kappa = \left(\frac{P_{\text{obs}} - P_{\text{chance}}}{1 - P_{\text{chance}}} \right) \]

\[\kappa = \left(\frac{.98 - .94}{1 - .94} \right) = \frac{.04}{.06} = .67 \]
What if a pregnancy test was claimed to be “98% effective”?

In these data, most (96%) were not pregnant anyway, so the test would have been correct 96% of the time even if the test always said the individual was not pregnant!

The pregnancy test does help above chance levels, but – given the sample data – not as much as the claim might lead one to believe.