Charting Progress with a Spreadsheet - I

We shall use Microsoft Excel to demonstrate how to chart using a spreadsheet. Other spreadsheet programs (e.g., Quattro Pro, Lotus) are similarly organized.

Single Phase Charts

It should take about five minutes to set up a chart showing a week’s worth of daily scores. Once the spreadsheet is set up, it takes about a minute to add subsequent weekly sets of scores.

The following procedure is not the only way you can use Excel to create a chart. I do it this way because it is similar to the way many graphics and statistical programs organize their data sets. You may be more comfortable organizing the data in another way. If so, do so.

We shall use the data set in Table 1 as our working example. For purposes of this example, these scores represent the number of new cases at a walk-in neighborhood service center per day.

Table 1: Data Set

<table>
<thead>
<tr>
<th>Date</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-Sep-2004</td>
<td>32</td>
</tr>
<tr>
<td>28-Sep-2004</td>
<td>34</td>
</tr>
<tr>
<td>29-Sep-2004</td>
<td>34</td>
</tr>
<tr>
<td>30-Sep-2004</td>
<td>33</td>
</tr>
<tr>
<td>1-Oct-2004</td>
<td>34</td>
</tr>
<tr>
<td>2-Oct-2004</td>
<td>28</td>
</tr>
<tr>
<td>3-Oct-2004</td>
<td>26</td>
</tr>
</tbody>
</table>

1. The first step is to open the Excel application by clicking on the Excel icon on the desktop or selecting Excel from the Start menu. The program opens with the data sheet window (Figure 1). Data sheet columns are labeled A, B, C, etc., and the rows labeled 1, 2, 3, etc.

 In column B and row 2 (cell B2) the word Date. Beneath this type in the consecutive dates covering the range in which data were collected.

2. In cell C2, type the word Cases. Beneath this, type in each score next to the date on which it was collected.

 Your data should be in the range from B3 in the upper left cell to C9 in the lower right cell. The data do not include the column heads which are in cells B2 and C2. Later we shall see that Excel defines this as Sheet1!B2:C9 which means “the data on sheet 1 in the cells from B3 in the upper left to C9 in the lower right.”

3. To create a chart, click on the Chart Wizard icon in the Excel toolbar (Figure 2).

4. The first of four dialog boxes will appear – Chart Wizard – Step 1 of 4 – Chart Type (Figure 3).

 Choose Line in the Chart type: box and the first option in the Chart sub-type: box (Line. Displays trend over time of categories.).

 Click the Next> button after you have done this.
5. In the **Chart Wizard – Step 2 of 4 - Chart Source Data** dialog box (Figure 4) make sure that the **Data range** text box shows the same range as covered by your data - =Sheet1!B2:C9. If your data cover a different range or if the information in this box is inaccurate, type in the correct information.

Your information should be organized in columns, so the **Columns** radio button should have a dot in it.

Click the **Next** button.

6. The **Chart Wizard – Step 3 of 4 - Chart Options** dialog box has several tabs across the top. Make sure that you are in the **Titles** tab section (Figure 5). If you are not sure, click on the **Titles** tab.

Type the title of your chart in the **Chart title** text box. I typed in **Intakes** as a sort of generic title.

You should type in a title that is descriptive of what the chart displays, e.g., **Level of Depression**, **Response Time for Priority One Calls**.

In the **Value (Y) axis** type in the name of your problem outcome measure. I typed in the name **Cases** for the example.

Yours should be descriptive of your particular outcome measure. For example, if you are measuring level of depression with the Generalized Contentment Scale (GCS), you should type in something like **GCS Score**. If you are measuring response time in minutes, you should type in **Minutes**.

Do **NOT** click the **Next** button.

Instead, click on the **Legend** tab at the top of the dialog box.
7. Under the **Legend** tab, click on the **Show legend** checkbox to remove the check mark (Figure 6).
 Now click the **Next>** button.

8. In the **Chart Wizard – Step 4 of 4 - Chart Location** dialog box (Figure 7), I clicked on the **As new sheet**: radio button. This put the chart on a separate sheet rather than as an object within the data sheet. Then, I clicked on the **Finish** button.

9. The chart sheet (Figure 8) will now appear. To change to border and area colors right click (press the right mouse button) in the plot area (the background within the chart). A menu will appear next to your mouse pointer. Select the **Format Plot Area…** option from the menu.

10. In the **Format Plot Area** dialog box (Figure 9). Click in the **None** radio button in both the **Border** section and the **None** radio button in the **Area** section. Click the **OK** button.

11. Now, right click on one of the dates beneath the category (X) axis. From the menu, click on the **Format Axis…** option. In the **Format Axis** dialog box, click on the **Font** tab at the top of the dialog box. Click on **12** inside the scroll box beneath the **Size**: text box. Leave the **Font**: and **Font style**: at **Arial** and **Regular** (Figure 10). Click on the **OK** button.

12. Now, right click on one of the numerals along the left side of the value (Y) axis. Format the font the same way as for the category (X) axis. Click on the **OK** button.
13. Right click on the value axis title (my value axis title is **Cases**). Select the **Format Axis Title**... option from the menu. Select the **Font** tab from the tabs at the top of the **Format Axis Title** dialog box. The **Font** selection should be **Arial**; select **Bold** for **Font style**; and set the **Size** at **14**.

 Click the **OK** button.
14. Right click on the chart title (mine is **Intakes**). From the menu, click on the **Format Chart Title…** option. Within the **Font** tab area, format the chart title as follows: **Font:** = Arial; **Font style:** = **Bold**; and **Size:** = 16.

15. Now right click on the data series line (the line depicting the score levels). Click on the **Format Data Series…** option. Make sure that the **Patterns** tab is selected within the dialog box (Figure 11).
 In the **Line** area, click on the **Custom** radio button to put the dot in it.
 Leave the **Style:** dropdown box at its default selection (an unbroken line).
 Click on the down (▼) arrowhead to the right of the **Color:** dropdown box to change the line color to black (in the upper left corner of the palette that will appear).
 Click on the **Weight:** down (▼) arrowhead and select the thickest line weight.
 Make sure that there is no checkmark within the **Smoothed line** checkbox.
 In the **Marker** area of the dialog box, make sure that the dot is inside the **None** radio button.
 Click on the **OK** button.

![Figure 11: Format Data Series - Patterns](image)

The chart is now formatted. You can print it as a separate document by clicking on the “**Chart1**” tab before selecting the **Print…** from the **File**. Once in the **Print** dialog box, make sure that the **Active sheet(s)** radio button has a dot in it before printing.

You can also insert the chart into a Microsoft Word document. To do this, you open the Word document in Word and the Excel chart in Excel. In Excel, you click on the chart to the left of the chart title to select the entire chart. Then choose **Copy** from the **Edit** menu (Figure 12).
Then switch to the Word document and click where you want the chart to appear. Then select **Paste** from the **Edit** menu (Figure 13).

You should label the figure with the figure number and a title as shown in Figure 14.
The way most people learn how to use software is by playing with it. Try different things with the program to become more comfortable with it.
Calculating a Trend Line

A trend line depicts an estimate of the direction of the data over time (increasing or decreasing). Procedures for constructing trend lines include semi-average celebration lines, split-middle celebration lines, and least squares regression lines. Spreadsheet programs use least squares regression techniques to construct trend lines.

To carry out a regression analysis the values on both axes must be numeric. Since the X-axis values for our example are dates (i.e., 27-Sep-2004, 28-Sep-2004, 29-Sep-2004, 30-Sep-2004, 1-Oct-2004, 2-Oct-2004, 3-Oct-2004), we must change them to numerals (i.e., 1, 2, 3, 4, 5, 6, 7).

Creating Numerical X Values

The following outline shows the procedure to create a numerical set of X values.

1. We begin by inserting a column between the **Date** and **Cases** column. Click on the **C** that heads the **Cases** column to highlight it (see Figure 15). Then click on the **Insert** menu and select the **Columns** option (see Figure 16).

![Figure 15: Select Column](image)

![Figure 16: Insert Column](image)

2. Make sure that the new column is highlighted. From the **Format** menu, select the **Cells...** option (Figure 17).

 In the **Format Cells** dialog box, select the **Number** tab (Figure 18).

 Within the **Category:** scroll box, select **General**.

 Then click on the **OK** button.

![Figure 17: Select Format Cells](image)

![Figure 18: Format Cells](image)
3. Type **Day** in the row with the other column headers (Figure 19) and enter the consecutive numerals 1, 2, 3, 4, 5, 6, and 7 in the **Day** column (Figure 20). This creates a numeric series for X-axis values.

![Figure 19: Label Column](image1)

![Figure 20: Enter Data](image2)

Calculating Y Values for the Trend Line

Label the column (E) for the least squares trend line data with the header **Trend** (Figure 20).

![Figure 21: Label Trend Column](image3)

We use the **FORECAST** function to calculate the Y values for the trend line from the values in the **Day** column. We do this by entering =**FORECAST(C3,D3:D9,C3:C9)** in the first cell (E3) as shown in Figure 22.1.

- **C3** contains the X value for which the trend line predicted Y value (in E3) will be calculated.
- **D3:D9** represents the range containing the actual or obtained Y values.
- **C3:C9** represents the range containing all the X values.

So, **FORECAST(C3,D3:D9,C3:C9)** could be translated as “For the range of X values in **C3:C9** and the range of Y values in **D3:D9**, predict the Y value on the least squares regression line for the X value given at **C3**.”

To predict this Y value to be placed in E4, we enter =**FORECAST(C4,D3:D9,C3:C9)** in cell E4.
This could be translated as, “For the range of X values in \(C3:C9 \) and the range of Y values in \(D3:D9 \), predict the Y value on the least squares regression line for the X value given at \(C4 \).”

In \(E5 \), we type \(=\text{FORECAST}(C5,D3:D9,C3:C9) \).

We continue this process for each cell in column \(E \) down to \(E9 \). Finally, we enter \(=\text{FORECAST}(C9,D3:D9,C3:C9) \) in the last cell (\(E9 \)) to obtain the predicted Y value for the regression line for the X value given in cell \(C9 \) (see Figure 22.2).

Figure 22.1: Predicted Trend Values

This gives us predicted Y values in the range \(E3:E9 \) for each X value in the \(C3:C9 \) range.

Creating the Trend Line Chart

1. To create the chart, click on the Chart Wizard icon in the Excel toolbar.
2. The first of four dialog boxes will appear – Chart Wizard – Step 1 of 4 – Chart Type.
 Choose Line in the Chart type: box and the first option in the Chart sub-type: box (Line. Displays trend over time of categories.).
 Click the Next> button after you have done this.
3. In the Chart Wizard – Step 2 of 4 - Chart Source Data dialog box (Figure 23), make sure that the Data Range tab is in front of the Series tab. If you are not sure, click on the Data Range tab.
 The Columns radio button has a dot in it and there should be lines depicting values for three variables: Day, Cases, and Trend.
 Cases labels the line depicting the values for the number of intakes per day from September 27th through October 3rd.
 Trend labels the least squares regression line.
 The labeled Day shows the numeric values (1, 2, 3, 4, etc.) we entered to create the predicted Y values for the least squares line. Since these values were used in the Forecast function as a “stand in” for the Date values, they should not be displayed in the chart.
 Do NOT click the Next> button.
4. Instead, click on the **Series** tab at the top of the dialog box. This will bring the content under the series tab to the front. In the **Series** scroll box, click on **Day** to highlight it (Figure 24). Then click on the **Remove** button to remove **Day** from the chart (Figure 25). After doing this, click on the **Next >** button.

![Figure 23](chart1.png) ![Figure 24](chart2.png)

5. In the **Step 3 of 4** dialog box (Figure 26), I typed **Predicted Trend for Intakes** in the **Chart title** text box. Next, I typed **Cases** in the **Value (Y) axis** text box. This created a vertically-oriented label for the Y axis. (No label was needed for the X axis, since the X values are obviously dates.)

 Again, do **NOT** click the **Next >** button.

6. Instead, click on the **Legend** tab. I moved the legend to the bottom of the chart by clicking in the **Bottom** radio button in the **Placement** section of the dialog box (Figure 27).

 After doing this, I clicked on the **Next >** button.

7. In the **Chart Wizard – Step 4 of 4 - Chart Location** dialog box, I clicked on the **As new sheet**: radio button. This put the chart on a separate sheet rather than as an object within the data sheet.

 Then, I clicked on the **Finish** button.
8. This brings up the new chart. To change to border and area colors right-click (press the right mouse button) in the plot area (the background within the chart). A menu will appear next to your mouse pointer. Select the **Format Plot Area**… option from the menu (Figure 28).

9. In the **Format Plot Area** dialog box, I clicked in the **None** radio button in both the **Border** section and the **Area** section. After this, I clicked the **OK** button.

10. Next, I right-clicked on one of the dates beneath the category (X) axis. From the menu, I clicked on the **Format Axis**… option. In the **Format Axis** dialog box, went to the **Font** tab. I chose 12 inside the scroll box beneath the **Size**: text box. I left the **Font:** and **Font style:** at **Arial** and **Regular** respectively. After this, I clicked the **OK** button.
11. Then, I right clicked on one of the numerals along the left side of the value (Y) axis. I used the same font format as for the category (X) axis. Again, I clicked on the **OK** button.

![Figure 28:](image)

12. I right clicked on my chart title (**Predicted Trend for Intakes**). From the menu, I chose the **Format Chart Title…** option. Within the **Font** tab area, I formatted the chart title as follows: **Font:** = Arial; **Font style:** = Bold; and **Size:** = 16.

There are two data series in this chart (**Cases** and **Trend**) that were formatted separately.

13. First, I right clicked on the data series line for **Cases**. Next, I clicked on the **Format Data Series…** option from the menu (Figure 29).

14. In the **Format Data Series** dialog box, I chose the **Patterns** tab (Figure 30). I chose the **Custom** option in the **Line** area. I left the **Style:** dropdown box at its default selection (an unbroken line). I changed the line color to black in the **Color:** dropdown box (black is in the upper left corner of the palette). I chose the thickest line weight from the **Weight:** dropdown box. I left no checkmark within the **Smoothed line** checkbox. In the **Marker** area of the dialog box, I left the dot inside the **None** radio button. After this, I clicked on the **OK** button.

15. Next, I right clicked on the data series line for **Trend**. From the menu, I selected the **Format Data Series…** option (Figure 31)
16. Under the **Patterns** tab (Figure 32) in the **Format Data Series** dialog box, I chose the **Custom** option in the **Line** area. In the **Style**: dropdown box, I chose the broken line option (— — —). I changed the line color to black in the **Color**: dropdown box (black is in the upper left corner of the palette). I left the **Weight**: dropdown box at its default selection. I left no checkmark within the **Smoothed line** checkbox. In the **Marker** area of the dialog box, I left the dot inside the **None** radio button. After this, I clicked on the **OK** button.

Usually, we draw more important data lines thicker than less important ones. Assume that I regarded the observed number of cases per day as being more important than the estimation of trend. Thus, I gave the **Cases** line a heavier weight than the **Trend** line. If I believed that the
estimation of trend was more important than the number of observed cases, I would give the **Trend** line a heavier weight than the **Cases** line.

17. I right clicked on the legend box. From the menu, I selected the **Format Legend…** option (Figure 33).

18. Under the **Patterns** tab, I left **Border** and **Area** at **Automatic** (Figure 34).

![Figure 33: Predicted Trend for Intakes](image)

![Figure 34: Format Legend](image)

19. Under the **Font** tab, I formatted the legend as follows: **Font:** = Arial; **Font style:** = **Bold**; and **Size:** = 14 (Figure 35).

![Figure 35: Format Legend](image)

The final chart with trend line appears in Figure 36.