A New Approach to Argument by Analogy: Extrapolation and Chain Graphs

Daniel Steel

Department of Philosophy

503 S Kedzie Hall

East Lansing, MI 48824-1032

steel@msu.edu
1. Introduction.
In order to make scientific results relevant to practical decision making, it is often necessary to transfer a result obtained in one set of circumstances—an animal model, a computer simulation, an economic experiment—to another that may differ in relevant respects—for example, to humans, the global climate, or an auction. Such inferences, which we can call *extrapolations*, are a type of argument by analogy. This essay sketches a new approach to analogical inference that utilizes chain graphs, which resemble directed acyclic graphs (DAGs) except in allowing that nodes may be connected by lines as well as arrows. This chain graph approach generalizes the account of extrapolation I provided in my (2008) book and leads to new insights that integrate the contributions of the other participants of this symposium. More specifically, this approach explicates the role of “fingerprints,” or distinctive markers, as a strategy for avoiding an underdetermination problem having to do with spurious analogies. Moreover, it shows how the extrapolator’s circle, one of the central challenges for extrapolation highlighted in my book, is closely tied to distinctive markers and the Markov condition as it applies to chain graphs. Finally, the approach suggests additional ways in which investigations of a model can provide information about a target that are illustrated by examples concerning nanomaterials in sunscreens and Wendy Parker’s discussion of fingerprints in climate science.

2. A Brief Recap.
When assessing a proposed solution to some problem, it is important to keep clearly in mind the standards by which success or failure should be judged. In my book, I insisted that any adequate account of extrapolation must answer a pair of challenges, namely, the extrapolator’s circle and the problem of difference. The extrapolator’s circle rests on the observation that evidence is needed to show that the model is relevantly similar to the target and hence a good basis for extrapolation. For example, one might suppose that a good model should possess the same or very similar mechanisms as the target. But then showing that the model is relevantly similar might seem to require first learning the mechanism in *both* and then comparing them to demonstrate the similarity. But in that case, extrapolation from the model to the target would be redundant. The challenge posed by the extrapolator’s circle, then, is to explain how it is possible to establish the similarity of the model and target without already knowing what one wants to extrapolate. The problem of difference is that some causally relevant differences between the model and target are inevitable in most interesting examples of extrapolation in the biological and social sciences. Thus, an adequate account of extrapolation must explain how extrapolation can be justified even when some causally relevant differences are present. The extrapolator’s circle and the problem of difference are presented by Hugh LaFollette and Niall Shanks (1996) as arguments for the claim that extrapolation from animal models to humans is never justified.

An answer to the extrapolator’s circle needs to explain how limited information concerning the target can be efficiently used to support the relevant similarity of the model. In my book, I proposed that this could be done within the context of a mechanisms-based approach to extrapolation by taking note of two key strategies for reducing the nodes or stages of the mechanisms that need to be compared in the model and target. First, we might possess background knowledge according to which causally
relevant disanalogies are likely to be found at some stages of the mechanism and not
others. If this is so, we can make our comparison more efficient by focusing only on the
points of likely relevant difference. However, in many and perhaps most cases of
extrapolation in biology and social science, data about the target needed for even this
more limited set of comparisons may not be accessible. That leads to the second strategy
for reducing the number of necessary points of comparison between model and target. A
difference in a mechanism matters to the outcome only if it has an impact on subsequent
steps along the way. Hence, comparisons of model and target mechanisms will be more
efficient if they focus on mechanism activities and components that are downstream in
the sense of being more direct causes of the outcome. In some cases, it may be possible
to measure a key downstream stage upon which any upstream difference must leave its
mark. In that case, only one point of comparison between model and target mechanisms
may be needed. In my book, I explained how the case of extrapolation of the
carcinogenic effects of aflatoxin B$_1$ from rats to humans illustrates this idea. These two
strategies for making model-target mechanism comparisons more efficient were
discussed in my book under the label comparative process tracing.

Comparative process tracing, however, does not answer the problem of
difference. For example, consider a case in which there is a single downstream stage of
the mechanism that can be compared between model and target to decide whether the
needed similarity is present. Suppose, then, that this comparison discovers a difference
that matters to the impact of the cause upon the effect. (In fact, the aflatoxin B$_1$ case is of
this sort.) Could extrapolation still be justified despite this causally relevant difference?
In my book, I suggested that the answer to this question depends on the specificity of the
causal claim that one wishes to extrapolate. The greater the specificity of the causal
claim, the closer the match between model and target must be. If the goal is to
extrapolate the exact probability distribution of the effect when the value of the cause is
set by an intervention, then a complete absence of causally relevant differences may
indeed be required. But for some types of probabilistic causal claim—particularly,
claims about positive causal relevance—extrapolation can be justified even when a good
deal causally relevant difference is present. Thus, even if we cannot extrapolate the exact
causal effect from model to target, we might still be justified in extrapolating the claim
that (say) exposure to aflatoxin B$_1$ increases the chance of liver cancer.

3. Analogy and Chain Graphs.
Since extrapolation is a type of analogical inference, analogy is a natural starting point
for an account of extrapolation. In this section, I sketch an account of analogical
reasoning that provides a more general perspective on extrapolation than the
mechanisms-based approach described in my book. One central theme of this account is
a distinction between what I call the basis of an analogy and types of evidence that could
be given to show that the basis is present. I then explain how the notion of a basis of an
analogy can be usefully represented by means of something called chain graphs, which
then can be used to clarify a number of aspects of analogical reasoning that are pertinent
to extrapolation.

Stripped to its bare bones, the logic of arguments by analogy is the following.
1. The model, m, and target, t, are relevantly similar.
2. Φ is true of m.
3. Therefore, Φ is probably also true of t.

Two central questions for analogical inferences are: what does it mean for the model and target to be relevantly similar and how do we know whether that relevant similarity, whatever it consists in, is present? I will call whatever features constitute the relevant similarity of the model and target the *basis* of the analogy. Clearly, the basis varies with Φ. *Some* similarities can always be found among any pair of objects, but the basis of an analogy requires a very particular sort of similarity, namely, one that matters to Φ. In the ensuing discussion, I will assume that Φ describes a cause and effect relationship. In this case, the relevant similarities would be features that make a difference to that causal link. Since mechanisms are thought to underlie causal relationships in complex systems such as organisms or social groups, they are a sensible candidate for the basis. Which mechanisms and which aspects of those mechanisms form the basis of the analogy would depend on further details of Φ. Moreover, as discussed in the foregoing section, how similar is similar enough will often depend on the specificity of that causal claim. I do not assert that mechanisms are the only possible basis for an analogy. In some cases, the relevant similarity might be largely functional. For instance, familiar technological devices—such as televisions or cars—often adopt similar user-interface designs even when underlying mechanisms differ. Hence, knowledge about the effects of, say, pressing the pedal farthest to the right on the driver’s side (i.e. the accelerator) can be extrapolated among cars with distinct types of engines. However, for the purposes of this discussion, I will assume that the basis for the analogy consists of relevantly similar mechanisms.

In a good argument by analogy, it should be reasonably clear what the basis is, and the claim that this basis is present in the model and target should be well founded. The most direct approach for establishing similarity of mechanisms is a step-by-step comparison of components and interactions among those components. For example, suppose you wanted to know whether two cars of distinct brands and appearance are powered by similar types of engines. The most direct way to answer this question would be to look under the hoods of the two cars and check for a correspondence in the arrangement of the working parts. But in many cases this direct “look and see” approach is not feasible, and it may be necessary to rely on more indirect evidence of similarities of mechanisms. For example, instead of directly comparing a sub-process of the mechanisms in the model and target, one might compare a side-effect of that sub-process. That idea is illustrated by the aflatoxin B$_1$ example I discussed in my book, wherein by-products of the mutagenic effects of that compound (DNA adducts circulating in the bloodstream) served a point of comparisons among humans and several animal models. The DNA adducts were an especially valuable in this case because they were indicators of a crucial downstream stage of the carcinogenic mechanism. Guala’s discussion of the Outer Continental Shelf (OCS) example in his contribution to this symposium is similar insofar as focusing on characteristic effects of auction rules, which he represents as a downstream stage of the mechanism in that case (see his figure 2).

In some cases, effects of mechanisms might constitute evidence of relevant similarity or difference even when we are not able to link those effects to a particular sub-process of the mechanism. For example, the clatter of a diesel versus the nearly inaudible whir of an electric motor might enable you to distinguish one type of engine from the other even if you are ignorant of the components and activities of the mechanisms that
are responsible for these distinct sounds. Thus, one might infer by their sounds that two engines are of the same type, and then proceed to use that similarity as a basis for analogical inferences. In addition, similar causes as well as similar effects can provide evidence that the basis is present in both model and target. For instance, we might think that two cars possess the same type of engine because they rolled off the same assembly line of the same factory.

In sum, there are a variety of types of evidence that could be called upon to support the basis for an analogy. In this section, I will focus on a challenge for establishing a basis of an analogy that arises when evidence consists of similar effects of the model and target. Similar effects of model and target provide evidence of a particular basis only if there is reason to think that those effects are consequences of that basis and not something else. More precisely, if \(B \) is the proposed basis of the analogy, then a spurious analogy is a similarity of effects of the model and target that is not a result of \(B \) holding true of both model and target. For example, a whirring sound emanating from two cars might be taken as evidence that both have battery-powered electric engines, when in fact one is powered by batteries and the other by hydrogen fuel cells. Thus, if \(B \) is the presence of a battery-powered electric motor and the effect is the whirring sound, then this is a case of a spurious analogy. This spurious analogy might lead to various mistaken inferences, for instance, that the hydrogen fuel cell car should be plugged into an electrical outlet overnight to recharge.

Chain graphs are a type of graphical representation in which nodes may be connected either by lines (undirected edges) or arrows (directed edges), for example, \(A \leftarrow B \rightarrow C \rightarrow D \). Chain graphs have received far less attention than DAGs, which may be because it is unclear just what chain graphs ought to be used for. One proposal is that chain graphs can represent equilibrium relations of dynamic feedback models (cf. Lauritzen and Richardson 2002). Here I propose that chain graphs may also be useful for representing analogical inferences. Analogies involve judgments that one thing is similar to another, and hence that information about the one tells you something about the other. For example, if \(A \) is similar to \(B \), then learning the causes and effects of \(A \) may tell you something about \(B \) and its likely causes and effects. Yet similarity is plainly a symmetrical relationship, and is therefore much more naturally represented by a line than an arrow. Chain graphs, then, are a natural format for representing analogical reasoning, which involves judgments about similarity as well as causation.

It is important to distinguish the sense of similarity pertinent to analogy, which is represented by a line linking two nodes in a chain graph, from a mere coincidence. Similarities of the sort relevant to analogical reasoning differ from mere coincidences in that they provide information about one another. For example, if I know that Tom and Fred have similar temperaments and I subsequently learn that Tom is prone to emotional outbursts, then I will think it more probable that Fred is prone to emotional outbursts as well. For ease of expression, I will use the term analogy to refer to mutually informative similarities of this sort. Coincidences, by contrast, are outcomes of independent processes that happen to have similar properties. For instance, if you and I both flip a coin, there is a \(1/4 \) chance that both will come up heads, but this outcome would not constitute an analogy. Prior to learning the outcome of my coin toss, the probability of heads in your toss is \(1/2 \), and after I flip my coin and see that it is heads, the probability that yours will come up heads remains \(1/2 \). In short, in a coincidence outcomes happen to
be similar in a particular case, but one outcome makes no difference to the probability of
the other.

In addition, a line drawn between two nodes in a chain graph represents an
analogy that is unmediated by other nodes in the graph. For instance, in the chain graph
\(A \leftarrow B \rightarrow C \rightarrow D \), the analogy between \(B \) and \(C \) makes \(A \) and \(D \) mutually informative.
Nevertheless, so long as this relationship between \(A \) and \(D \) is due solely to their
connections to \(B \) and \(C \), respectively, no additional line is drawn directly between \(A \) and
\(D \). If a line was drawn directly between \(A \) and \(D \), this would indicate that there is some
additional basis of analogy between them.

Let’s consider the use of chain graphs to represent analogical reasoning
conjunction with the concept of a basis of an analogy. Let \(B(m) \) be a variable that
indicates the basis in the model, \(m \). If the basis for the analogy is a particular type of
mechanism, then \(B(m) \) might equal 1 if that mechanism is present and 0 otherwise. For
example, consider the OCS case mentioned above (Guala 2005, 189-192). This example
concerned the explanation of lower than anticipated profits ensuing from off-shore oil
drilling leases purchased at auctions. One explanation was the “winner’s curse,”
according to which bidders fail to adequately take into account the fact that, if they are
the highest bidder, then it is likely that they have overestimated the value of the lease.
However, the winner’s curse assumes that bidders violate some rationality constraints
often presumed in economic models of what are known as “common value auctions” (i.e.
auctions in which the item on the block has a constant but unknown value for all bidders).
Thus, in this example, \(B(m) = 1 \) if the winner’s curse explanation is correct in the model,
while \(B(m) = 0 \) if the rationality assumptions typical of economic models of common
value auctions are correct of the model. The basis for the target, \(B(t) \), would be defined
similarly. \(^1\) If there is an analogy between model and target, then learning \(B(m) = 1 \)
increases the probability that the same is true of \(B(t) \).

What evidence, then, would justify drawing a line between \(B(m) \) and \(B(t) \) in the
chain graph and thereby asserting a basis for analogy? In the OCS example, the models
were economic experiments conducted in laboratory settings, while the targets were real
auctions of leases for off-shore oil drilling. The basis in this case consisted of the
auctioning mechanism, which depended in turn on the auction procedures, the type of
item being auctioned, as well as the cognitive processes of the bidders. Some of these
features, such as the auction procedures, can be verified directly, but the same is not true
for others, especially the reasoning processes of those making the bids. Thus, this key
aspect of the analogy between \(B(m) \) and \(B(t) \) would have to be supported by more indirect
evidence. One possible type of evidence would be similar effects of \(B(m) \) and \(B(t) \),
particularly, effects that are linked to whether the bidders make adjustments for the
possibility that their information overstates the value of the item. Guala describes two
effects of this kind that correspond to differing predictions made by the two potential
mechanisms (2005, 191-3). The first is that larger numbers of bidders in the auction are
associated with higher bids. Let \(E_1(m) = 1 \) indicate the presence of this association in the
experimental model and \(E_1(m) = 0 \) its absence, and likewise for \(E_1(t) \) with regard to the
real world auctions. The winner’s curse mechanism predicts that this effect is present,
while the rational choice model predicts that this effect is absent. The second effect is

\(^1\) For simplicity and ease of illustration, I assume here that the basis has only two possible values.
However, \(B(m) \) and \(B(t) \) could potentially have as many values as one would like.
that public information concerning the value of the item increases profits. Again, let \(E_2(m) = 1 \) indicate that this effect is present in the experimental model and \(E_2(m) = 0 \) indicate its absence, and likewise for \(E_1(t) \). As before, the winner’s curse hypothesis predicts that this effect is present, while the rational choice alternative predicts the opposite. Both of these effects were found in laboratory experiments and in field data concerning real life auctions of oil drilling leases (Guala 2005, 192). These results can be explained by the chain graph in figure 1. According this graph, the analogous winner’s curse mechanisms in the model and target systems account for the similar results in each. One important consequence of this graph is that further effects of the winner’s curse found in the model may provide evidence for similar effects in the target.

![Figure 1: A chain graph to represent the analogical reasoning in the OCS example. Variables in rectangles are directly observed, while those in ovals are not.](image)

However, the chain graph in figure 1 is not the only possible explanation in this case. One alternative would be that the common effects are a mere coincidence and hence not due to any underlying similarity of the model and target at all. In that case, the similarity of \(E_1 \) and \(E_2 \) in the model and target would provide no basis for expecting correspondences in other effects. But even if the similarity of effects in the model and target is not a coincidence, it could still be due to an analogy other than the winner’s curse. In this case, there may be some grounds for predicting similarities with regard to further effects, although not necessarily the same effects as if the winner’s curse were the shared basis. These two alternatives are represented by the chain graphs in figures 2 and 3, respectively. In these graphs, \(A(m) \) and \(A(t) \) represent alternative causes that impact \(E_1 \) and \(E_2 \). In both of these cases, the analogy would be spurious.

![Figure 2: The corresponding effects in the model and target are a coincidence, that is, the result of very different mechanisms.](image)
Both of these alternatives depend on the possibility that there exist other causes of E_1 and E_2 besides the winner’s curse. If we knew or could somehow show that such alternative causes do not exist, then we could be confident that the chain graph in figure 1 is correct. This, I think, is precisely where Parker’s concept of “fingerprints” or distinctive markers of a causal process enters the picture. A distinctive marker is a telltale indicator of a particular cause, as fingerprints are indicators of the manual contact of a particular person. Thus, if E_1 and E_2 are distinctive markers of the basis B, then we can be practically certain that B is present in the model and target when both have these effects. But on what basis could we claim that an effect, or set of effects, is a distinctive marker? In the next section, I consider that question and show that there is a surprising connection between distinctive markers and the extrapolator’s circle.

4. Fingerprints and Circles.

One reason to establish an analogy, like the one represented by the chain graph in figure 1, is to enable the model to serve as grounds for drawing inferences about the target. This idea is represented in figure 4. As before, values of variables inside rectangles are observed while the values of those inside ovals are inferred, so in figure 4, an additional effect, E_3, has been observed in the model but not in the target. Thus, given the analogy between $B(m)$ and $B(t)$, the observation of the value $E_3(m)$ provides evidence concerning the value of $E_3(t)$. The usefulness of the chain graph representation of analogical inference becomes especially apparent at this point, since it provides a framework for deciding which variables in a graph are probabilistically associated with which others. This leads to a more precise formulation of the extrapolator’s circle, demonstrates a close tie between the extrapolator’s circle and fingerprints, and, finally, suggests an additional way in which models can provide useful information about a target.
In the previous section, we noted that fingerprints, or distinctive markers, suggest an appealing strategy for avoiding spurious analogies, which are understood as a type of underdetermination problem within our chain graph approach. A distinctive marker is an effect that could only have resulted from the hypothesized basis of analogy. Hence, if E_1 and E_2 are distinctive markers of B, then they make B practically certain. However, this quickly leads to a difficulty for the idea learning further effects in the model will tell us something about further effects in the target. In particular, it is natural to suppose that probability distributions associated with chain graphs will obey a version of the Markov condition (cf. Lauritzen and Richardson 2002). One familiar consequence of the Markov condition for DAGs is that common causes screen-off their effects. For example, in the graph $A \leftarrow B \rightarrow C$, A and C are probabilistically independent conditional on B, or more colloquially, once we know B, learning A provides no additional information about C, and vice versa. Although the Markov condition for chain graphs differs from that for DAGs, it has a very similar consequence, which we can state as: a basis of an analogy screens-off its effects. For instance, in the chain graph $A \leftarrow B \rightarrow C \rightarrow D$, A and D are probabilistically independent conditional on B. Once we know B, A no longer tells us anything about D, and vice versa. Similarly, in figure 4, $B(t)$ screens-off $E_3(m)$ from $E_3(t)$. But if the previous two effects are distinctive markers of B, then we know the value of $B(t)$ with practical certainty, which means that subsequently learning the value of $E_3(m)$ provides no further information about $E_3(i)$.

This result makes the same point as the extrapolator’s circle: evidence sufficient to establish the analogy between model and target may also render any further information about the model redundant. The solution to the extrapolator’s circle proposed in my book sought to avoid this problem by noting that the effects may be indicators only for a key stage or component of the mechanism rather than an indicator of the whole thing. In the aflatoxin B_1 example, the effect consisted of the DNA adducts circulating in the blood stream among those exposed to aflatoxin B_1. These DNA adducts consist of an aflatoxin B_1 molecule covalently-bonded to a fragment of DNA, and hence can reasonably be treated as distinctive markers of an interaction between aflatoxin B_1 and the DNA of the organism. However, the DNA adducts are not distinctive markers of the mechanism as a whole, since they do not tell us what carcinogenic effects, if any, that interaction has. Consequently, if the remainder of the mechanism (i.e. from the formation of DNA adducts to the carcinogenic effect) in the animal model is analogous to that in humans, then have grounds for extrapolating the carcinogenic effect found in the animal model.

The analysis in this section suggests an additional possibility. So far, we have assumed that we knew about the effects of the basis, but were unsure about the analogy between the model and target. Hence, we tried to establish the analogy by comparing effects. However, it is also possible that we have strong antecedent reasons for the hypothesized analogy between model and target, but are uncertain of the effects of the basis. In this situation, the purpose of studying the model would be to discover what the effects of the basis are. Once those effects are discovered in the model, we can infer from the analogy that they are likely to be present in the target as well. This idea is nicely illustrated by a recent study on, of all things, the effects of sunscreens containing nanoscale materials on prefabricated painted metal roofing in Australia.
Since around 2006, complaints of unsightly blemishes and patches unusually rapid deterioration have arisen from Australians whose homes were fitted with newly installed pre-painted steel roofs. The blotches often took the shape of boot or handprints, clearly suggesting a cause with involving contact of the workers. One possible explanation was that the premature damage resulted from new materials contained in sunscreens that may have been used by workers installing the roofs. Two Australian industrial scientists, Philip Barker and Amos Branch, constructed an experimental model to test this hypothesis: they purchased a representative sample of over-the-counter sunscreens and applied them to commercially available pre-painted steel roofs that were then exposed to the Australian sun (Barker and Branch 2008). There can be little serious doubt about the analogy between the experimental model and the roofs that constituted the target in this case, since the materials were obtained from the same sources and subjected to the same environmental conditions. Indeed, this example nicely illustrates the observation made in the previous section that a common origin of the model and target can constitute evidence for an analogy. The question in this case was whether the damage to the metal roofs was due to some ingredient in the sunscreen, and if so, which one. Barker and Branch found that the premature weathering occurred only in roofing materials treated with sunscreens containing nanoscale titanium or zinc oxide, and they carefully traced the mechanism through which this damage occurred.

Consider how this example contrasts with the aflatoxin B₁ example. In the aflatoxin example, the status of DNA adducts as a distinctive marker of a potentially mutagenic interaction between aflatoxin B₁ and the organism’s DNA was could be inferred from already accepted background knowledge. Comparisons of this distinctive marker, then, were used to support the analogy between the model and target. In the roofing example, the analogy was antecedently well-founded, but experimentation on the model was necessary to discover that the “unsightly defects” in the pre-painted steel roofing were distinctive markers of a photocatalytic mechanism involving nanoscale materials included as ingredients in some modern sunscreens. My sense is that the argumentative strategy of climate scientists described in Parker’s contribution combines elements of both of these cases. The climate scientists needed to discover distinctive markers by means of experimentation with their models, and they also relied on comparisons involving those distinctive markers to support the analogy between the climate models and the real climate.

References