Causality, Causal Models, and Social Mechanisms

Daniel Steel

Department of Philosophy
Michigan State University
503 S Kedzie Hall
East Lansing, MI 48824-1032
Introduction

Causation is one of the most important and contentious issues in social science. Any aspirations for a better social world, whether they concern the alleviation of inequities or the promotion of wealth, must explicitly or implicitly rely on beliefs about the causes and effects of government policies, social institutions, norms, or other phenomena that fall within the purview of social science. Yet everyday exemplars of cause and effect relations are typically drawn from relatively simple physical setups and machines such as billiards and lawnmowers. Indeed, the expression “social mechanism” reflects this transfer of concepts from mechanical to social. Moreover, many important questions in social science concern social systems and phenomena—economies, racial segregation, etc—whose extent and complexity make them difficult if not impossible to study in controlled laboratory settings. The result of all this is that causation is central and perennial issue for the philosophy of social science. This chapter examines three general approaches to studying causation in social science and the conceptual connections among them.

One commonly drawn distinction in social science research is between quantitative and qualitative approaches. Whereas quantitative research examines large sets of numerical data which are then analyzed by means of statistical techniques, qualitative research focuses in depth on a relatively small number of cases. A good representative of the mainstream view on the relationship between these two approaches can be found in the influential book, Designing Social Inquiry: Inference in Qualitative Research (King, Keohane, and Verba 1994), which I will henceforth refer to as DSI. According to DSI, a shared logic underlies both quantitative and qualitative research and
this logic is most clearly exhibited in quantitative research. Advocates of qualitative research, while mostly agreeing that there are important commonalities among the two approaches, reject what they perceive as DSI’s characterization of qualitative research as the poor relation to quantitative social science (Ragin 2004; McKeown 2004). Charles Ragin also critiques the “quantitative versus qualitative” distinction, arguing that the intended contrast is better drawn in terms of variable versus case oriented research (Ragin 1987). Ragin’s formulation of this distinction associates the two approaches with distinct types of models: linear equations for variable oriented and Boolean logic for case oriented. I adopt the “variable versus case” version of the distinction mainly because I find the emphasis on types of causal model fruitful. Variable oriented social science research is also contrasted with mechanism approaches (Hedström and Swedberg 1998; George and Bennet 2005). Mechanism approaches study causal relationships by developing models, often represented by mathematical formula, of micro-processes that could generate a macro-sociological phenomenon of interest. Advocates of social mechanisms often claim that they can overcome difficulties associated with variable oriented research, especially, the problem that a correlation found in the data may be explained by an omitted variable rather than a direct causal influence (Elster 1983; Little 1991; Hedström and Swedberg 1998).

In this chapter, I explore the interrelationships among variable, case, and mechanism oriented approaches to social science research. I agree that there is a common logic behind variable and case oriented approaches, but I suggest that this commonality is best formulated within an approach to causal inference that relies on Bayesian networks (Bayes nets, for short). More specifically, the types of causal models
associated with the two approaches—linear equations for variable oriented and Boolean logic for case oriented approaches—are two types of parameterizations of Bayes nets. The Bayes nets framework, therefore, identifies model-general aspects of causal inference that pertain to these two as well as other types of causal models and thereby can reasonably be taken to articulate the “underlying logic” of causal inference to which the author’s of *DSI* refer. One useful consequence of this analysis is that it shows how challenges often associated with variable oriented approaches—such as problems linked to omitted common causes—are also difficulties for case oriented research. Finally, I consider the connection of mechanism-oriented research to variable and case oriented approaches to causal inference. Advocates of mechanisms in social science typically claim that mechanisms are valuable for explanation and for assisting causal inference. I focus on the second of these two claims here and suggest that the relationship between mechanism and variable oriented approaches is best understood by way of a distinction between what I call direct and indirect causal inference.

Variable versus Case Oriented Approaches

The contrast between quantitative and qualitative social science research naturally suggests a difference that has to do with numbers: quantitative researchers work with a large samples of numerical data that they subject to statistical analysis, while qualitative researchers delve into non-quantifiable features of a relatively small number of cases. For example, this sort of distinction seems, at least to a first approximation, to capture central differences between such social science disciplines as econometrics and cultural anthropology. Those who pursue quantitative approaches to social sciences are more
likely to see their methods as continuous with natural science, while a tendency to identify with research methods typical of the humanities is more common, though certainly not universal, among qualitative researchers. Thus, the quantitative versus qualitative distinction taps into an old and central debate about the nature of social science method and its relation to methods in the natural sciences. In this section, I focus on the positions taken on this issue in *DSI* and in reactions to it.

It is safe to say that *DSI* is the most widely discussed work on social science methodology published in the last twenty-five years (cf. Brady and Collier 2004; George and Bennett 2005). The central theme of *DSI* is that differences between quantitative and qualitative approaches to social research are primarily matters of style rather than substance and that both approaches rely on “the same underlying logic of inference” (p. 4). But while insisting that “neither quantitative nor qualitative research is superior to the other” (p. 5), *DSI* goes on to make clear that it regards good quantitative social research as a model for good social science in general.

Non-statistical research will produce more reliable results if researchers pay attention to the rules of scientific inference—rules that are sometimes more clearly stated in the style of quantitative research. … The very abstract, and even unrealistic, nature of statistical models is what makes the rules of inference shine through so clearly. (p. 6)

The central thesis of *DSI* and the arguments for it have stimulated a good deal of critical discussion among social scientists. One line of criticism stems from social scientists who identify as qualitative or case-oriented researchers and who reject what they see as the lack of understanding or proper respect paid to their methods by *DSI*. The representative
of this line of argument that I will focus on here is Charles Ragin, who is well-known in the literature on social science methodology for developing an approach to the comparative method based on Boolean algebra (Ragin 1987).

Ragin prefers to frame the “quantitative/qualitative” distinction in terms of variable versus case oriented research (1987, chapters 3 and 4). This way of drawing the distinction focuses attention on the type of research question asked and models used. I adopt Ragin’s way of drawing the distinction since I think an emphasis on distinct types of causal models is more theoretically fruitful than stressing the presence or absence of numerical data. After all, seemingly qualitative ethnographic research in cultural anthropology often involves the collection of numerical data on such things as the number of individuals living in households or the time spent on various tasks according to age or gender. The “variable versus case” distinction is also more useful for a discussion of mechanism oriented approaches, which are often quantitative in the sense of utilizing mathematical models but which usually do not involve statistical analyses of large samples of data.

Variable oriented research begins with a question about the impact of one or more variables on some outcome of interest, for example, the impact of gun control on crime or of budget deficits on economic growth. This type of question tends to treat the impact of a variable in abstraction from the variety of particular contexts and combinations of other causes in which it might occur. This point is closely related to an important feature of variable oriented research as characterized by Ragin, namely, that it usually treats variables as acting independently of one another. This assumption is typically implicit in
choosing to represent the influences of the causes upon the effect by means of a linear equation such as the following.

\[y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon \]

Here \(y \) is the dependent variable (the effect), \(x_1 \) through \(x_3 \) are the independent variables (potential causes), \(\alpha \) is the intercept, \(\beta_1 \) through \(\beta_3 \) are the coefficients, and \(\epsilon \) is the error term which represents the effects of any omitted causes. For example, \(y \) might be a variable representing income, while \(x_1 \) through \(x_3 \), respectively, stand for educational attainment, IQ, and parents’ income. The research question, then, might be: what impact do these three variables have on income? Possible answers correspond to distinct assignments of numbers to the coefficients. To assume that the correct answer fits the form of the above equation entails some assumptions about what the correct answer could be, for instance, that the independent variables act separately upon \(y \) (e.g. the impact of \(x_2 \) does not depend on the value of \(x_3 \)).

In contrast, case oriented research is motivated by an interest in one or a small number of cases. For example, a case oriented researcher might be stimulated by an interest to explain the bursting of the “dot-com” bubble in the late 1990s, a question that would naturally invite comparisons with other stock market busts. A key feature of case oriented research as understood by Ragin is that it is deeply concerned with teasing apart complex interactions of causes found in particular cases. According to Ragin, when pursuing a case oriented approach:

Researchers examine cases as wholes, not as collections of variables. An interest in interpreting specific cases and in pinpointing the combinations of conditions,
the causal complexes, that produce specific outcomes encourages investigators to view cases as wholes. (1987, p. 52)

Ragin’s approach is intended for cases in which causes and effects can be represented by as conditions or events are that are present or absent. The goal, then, is to identify which combination of conditions (or absences) result in the outcome. Boolean logic, which will be familiar to anyone who has taken an introductory logic class, can be used to represent relationships among variables in such circumstances. This is best understood by way of an example. Consider the truth table in figure 1, which is adapted from Ragin (1987, p. 96). This table is a hypothetical example of a study of three potential causes of a successful strike (S): high demand for the product produced by the striking workers (A), threat that other workers will also go on strike out of sympathy or solidarity (B), and a large strike fund (C). In the table, 1’s indicates that the condition is present and 0’s indicates that it is absent. For example, in the forth row from the top, only A is present while B, C, and S are absent.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>S</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 1: A hypothetical example: $A =$ booming product market, $B =$ threat of sympathy strikes, $C =$ large strike fund, and $S =$ successful strike.
Given a table of this sort, Ragin describes some fairly simple procedures for identifying sets of minimal combinations of causes that generate the outcome. First, list the rows in the table for which the outcome S is present, which in figure 1 are the first through third rows and the sixth row. This can be represented in the following Boolean equation.

$$S = ABC \oplus ABC \oplus A\overline{B}C \oplus \overline{A}BC$$

In this equation, a line over a letter indicates the absence of that characteristic, for instance, \overline{C} indicates the absence of C. The \oplus symbol is called “Boolean addition,” which is equivalent to disjunction, that is, “or.” Adjacent letters, such as ABC, represent “Boolean multiplication,” which is equivalent to conjunction, that is, “and.” Finally, the equals sign represents the biconditional, which can be expressed in English as “if and only if.” Thus, the above equation is a compact representation of the rather cumbersome claim that S is present if and only if either A, B, and C are all present, or A and B are present while C is absent, or A and C are present while B is absent, or A and C are absent while B is present.

As Ragin explains, a Boolean equation like the one above can often be simplified to an equation containing fewer terms in two steps. The first step proceeds by finding what we can call minimizing matches. A minimizing match is a disjunction of two terms that are the same except for one letter which is has line above in one term but not in the other. In the equation above, there are three minimizing matches: $(ABC \oplus \overline{A}BC)$, $(ABC \oplus \overline{A}BC)$, and $(A\overline{B}C \oplus \overline{A}BC)$. A minimizing match is logically equivalent to a single term that omits the letter that varies in the pair. For example,
Thus, the Boolean equation above simplifies to the following.

\[S = AB \oplus AC \oplus BC \]

The next step consists of removing terms that are redundant in the sense that any way of making the term is true will also make one or more of the other terms true. For example, \(AB \) can be true in two ways: \(ABC \) or \(\overline{AB}C \). Yet if it is \(ABC \), then \(AC \) is true, and if it is \(\overline{ABC} \), then \(BC \) is true. Notice that neither \(AC \) nor \(C B \) is redundant in this sense, for example, if \(\overline{ABC} \), then \(AC \) is true and the other two terms are false. So after removing the redundant term \(AB \), we are left with the following.

\[S = AC \oplus BC \]

In this example, then, \(AC \) and \(BC \) are the “prime implicants” of \(S \), that is to say, they are the minimal sets of conditions that are both necessary and sufficient for that outcome.

Given a causal interpretation, this hypothetical example says that the two basic combinations of conditions that result in a successful strike are: (1) a booming product market and a large strike fund, and (2) threat of sympathy strikes and the absence of a large strike fund. Of course, real examples are unlikely to be as neat and clean as this hypothetical one. In real cases it often happens that there are some possible combinations of the potential causes that are not instantiated in any case, and it is also not rare that there are cases having the same values for the potential causes but different outcomes.

Causal reasoning relying on Boolean logic forces one to pay careful attention to possible causal interactions among variables, which makes it an attractive approach for

1 Minimization is based on the logical fact that \(P \) is logically equivalent to the disjunction \(P \) and \(Q \), or \(P \) and not-\(Q \). For example, if Joe has red hair, then either he has red hair and green eyes, or he has red hair and does not have green eyes. And conversely, if we know that Joe either has red hair and green eyes or he has red hair and does not have green eyes, then we know that he has red hair.
case oriented research in which complexes of interacting causes are a central concern. In contrast, an approach to causal inference that relies on linear equations will tend to obscure such interactions. Instead, it will provide an overall estimate of the impact of each cause that depends on the frequency with which conditions necessary for the operation of that cause happen to be present in the population. Consequently, an estimate of this kind might provide very little information about what the impact of the cause would be in a distinct population wherein the frequency of those interacting causes are very different. However, the major downside of Boolean approaches to causal inference is that they are feasible only for cases involving a relatively small number of potential causes that can take on only a very limited number of possible values, since otherwise the truth table will be unmanageably huge. For instance, in the hypothetical example described above, there were only three potential causes and each potential cause had only two possible values (present or absent). In this case, the number of rows of the truth table is $2^3 = 8$. In general, then, the number of rows in a truth table will be n^m, where n is number of possible values per potential cause and m is the number of potential causes. It can be easily understood, then, why Boolean approaches would not be useful for research questions involving quantitative variables, such as income, whose range of possible values might be in the millions. Of course, it is possible to use statistical tests for interaction effects in conjunction with linear models like those considered above. But such tests typically focus on a few salient potential interactions, rather than considering every possible one as a Boolean analysis would.

Let us return, then, the claim made in *DSI* that inferences in quantitative and qualitative social science are based on a common logic and differ mainly in matters of
style. Provided that we interpret this claim by reference to Ragin’s “variable versus case” rendering of the distinction, we can see that there is at least one difference that seems to be more than merely “stylistic,” namely, the choice of which type of causal model to use. However, the authors of DSI would insist that the common logic to which they refer transcends differences in the type of causal model chosen (1994, 87-9). What, then, is this common logic? In part, the logic of scientific inference proposed in DSI consists of ideas about scientific method that are largely inspired by the writings of Karl Popper (1959). For example, DSI insists that hypotheses should be testable, and the more testable the better (1994, pp. 19-20). In addition, DSI echoes Popper’s strictures on the use of ad hoc modifications to save a hypothesis from apparent refutation by data: modifications that merely restrict the scope of application of a hypothesis, and hence reduce its testability, are undesirable (pp. 21-22). Some critics of DSI, especially Ragin, take issue with its stance on the use of ad hoc modifications in response to cases that contradict a theoretical prediction (2004, p. 126). Besides its insistence on some very general points about scientific method, DSI also gives more specific advice about appropriate methods for testing causal hypotheses. For example, DSI stresses that causal inference is possible only from data in which there is variation in the potential cause or causes (p. 108) as well as variation in the effect (p. 129) and that comparison groups that differ with respect to the potential cause or causes should be relevantly similar in other ways (pp. 91-95). Some critics take issue with the more specific recommendations about causal inference found in DSI, particularly, with regard to the role of mechanisms in causal inference and explanation (George and Bennett 2005, 11).
The focus here will be on the aspects of a common logic that pertain specifically to causal inference rather than to scientific inference in general. In particular, I will propose that the Bayes nets approach to causation is a good candidate for a general framework that clearly articulates a common logic of causal inference. I explain how linear and Boolean models are simply two distinct kinds of parameterizations of Bayes nets. From this perspective, DSI is largely correct in its insistence that similar rules of causal inference apply to variable and case oriented research. In particular, I explain how the possibility of unmeasured common causes—often cited as major challenge for variable oriented research—arises for case oriented approaches as well.

Bayes Nets and Causal Models

Bayesian networks (or Bayes nets, for short) are an increasingly commonly used framework for representing causal claims and, consequently, for causal inference from statistical data (cf. Pearl 2000, Spirtes, Glymour and Scheines 2000; Neopolitan 2004). A Bayes net consists of two things: (1) a graph with arrows linking nodes that represent variables and (2) a probability distribution over the variables in the graph. Typically, Bayes nets approaches assume that graphs are acyclic. A graph is acyclic if there is no chain of arrows aligned head-to-tail that begin and end with the same node. An acyclic graph consisting of nodes linked by arrows is called a directed acyclic graph, or DAG. An example of a DAG is provided in figure 2. This DAG represents a hypothesis concerning the causal relationships among external threat (ET), external conflict (EC), domestic power inequalities (DPI), and democratization (D). When a DAG is used to represent causal relationships, an arrow between two variables represents an influence...
that is not mediated by any of the other variables in the DAG. However, the arrow does not specify the nature of that influence, for example, whether it makes the effect more likely or less likely to occur. Such information is provided by the probability distribution associated with the DAG rather than in DAG itself. Some terminology will be helpful for discussing the relationships represented in DAGs. In a DAG, a node X is said to be a parent of another Y if there is an arrow pointing directly from X to Y. For example in figure 1, the parents of D are ET and EC. A directed path is a sequence of nodes X_1, X_2, X_n such that, for each pair X_i and X_{i+1} in the sequence, X_i is a parent of X_{i+1}. In figure 2, $ET \rightarrow DPI \rightarrow EC$ and $DPI \rightarrow EC \rightarrow D$ are both directed paths. A node Y is said to be a descendant of X if there is a directed path from X to Y. In figure 2, for example, EC, DPI, and D are descendants of ET.

![Figure 2: An example of a directed acyclic graph (Rasler and Thompson 2004, p. 885).](image)

In a Bayes net, the probability distribution associated with a DAG is assumed to obey something known as the Markov condition.

Markov Condition: Each variable in the graph is probabilistically independent of its non-descendants conditional on its parents.

2 Notice that the definition of directed path entails that any sequence containing only one node is a directed path, since in that case the requirement that each pair X_i and X_{i+1} is linked by an arrow pointing directly from X_i to X_{i+1} is trivially satisfied. Thus, every node in a DAG counts as a descendant of itself. This seemingly odd feature of the definitions is deliberate and facilitates the statement of the Markov condition.
In figure 2, the parents of D are ET and EC, while DPI is the only non-descendant of D. Thus, the Markov condition requires that D is probabilistically independent of DPI conditional on ET and EC. Intuitively, that means that, once you know the values of ET and EC, learning the value of DPI doesn’t tell you anything more about what the value D is likely to be. A more precise understanding of what the Markov condition asserts requires introducing a bit of probability notation, especially the concept of conditional probability. A conditional probability is the probability of an event A among those cases in which B obtains. This is written as $P(A \mid B)$ and read “the probability of A given B.”

An example of a conditional probability is the rate of unemployment among those who have a college degree, which would presumably be lower than the rate of unemployment in the general population. In probability theory, it is a standard convention is to use lower case letters to denote the particular values of a variable. For instance, if X is a variable representing height, then x might be a particular height (say, 6 feet). In the simplest case, variables have only two values. For example, if D indicates democratization, then the two values of D might indicate the presence and absence of this feature, which might be denoted d_1 and d_2, respectively. Likewise, the values of ET (external threat) might be et_1 and et_2, indicating presence and absence of external threats, respectively. Given this set up, the claim that democratization is less likely among those states confronted by external threats would be expressed in probability symbols as follows: $P(D = d_1 \mid ET = et_1) < P(D = d_1 \mid ET = et_2)$. For convenience, the uppercase letters representing variables are often omitted, which in this example results in the following, more compact expression: $P(d_1 \mid et_1) < P(d_1 \mid et_2)$.

14
Given the notion of conditional probability, we can now provide a more precise definition of the notion of conditional probabilistic independence mentioned in the Markov condition: X is probabilistically independent of Y conditional on Z just in case, for every $x, y, \text{ and } z$, $P(x \mid y, z) = P(x \mid z)$. As explained above, the lowercase letters are particular values of the variables represented by the corresponding uppercase letters. So this is saying that once you know the value Z, learning the value of Y provides no additional information about what the value of X is likely to be. The expression “$X \perp \mid Z \mid Y$” is often used as an abbreviation for “X and Y are probabilistically independent conditional on Y.” For example, the Markov condition requires in figure 2 that $D \perp \mid DPI \mid \{ET, EC\}$, which is a prediction that we may be able to test if we have a good sample of data for these variables. The expression $X \perp \mid Y$ indicates that X and Y are probabilistically independent, which means roughly that learning the value of X provides no information about the likely value of Y.

As this example suggests, the Markov condition facilitates causal inferences from statistical data. It will be helpful to list three of the most important consequences of the Markov condition in this regard. The simplest of these is that an absence of a causal connection between two variables entails an absence of probabilistic dependence between them. Let us say that there is a causal connection between X and Z if and only if X is a cause of Z, Z is a cause of X, or there is some third variable that is a common cause of both.

Consequence 1: If there is no causal connection between X and Y, then $X \perp \mid Y$. This means that when data indicates that two variables are probabilistically dependent, we can infer that there is some causal connection between them, although we cannot infer
from this alone whether that connection consists of one causing the other or a third variable that is a cause of both.

Consequence 2: In both $X \rightarrow Y \rightarrow Z$ and $X \leftarrow Z \rightarrow Y$, $X \perp\!\perp Y \mid Z$. In other words, intermediate causes screen-off upstream causes from their effects, and common causes screen-off their effects from one another.

In figure 2, D is linked to DPI both as an effect of a common cause, ET, and as an indirect effect through the path $DPI \rightarrow EC \rightarrow D$. Thus, the observation that $D \perp\!\perp DPI \mid \{ET, EC\}$ is an illustration of consequence 2. Combining consequences 1 and 2 yields a common strategy for drawing causal inferences from statistical data. Suppose that two variables X and Y are correlated with one another and that we know that Y cannot be a cause of X, for instance, because X is prior in time to Y. Then we have evidence that X is a cause of Y if this correlation persists even when we condition on all of the possible common cause variables that we can think of. There are some shortcomings with this strategy—for example, some common causes might fail to be considered or a suspected common cause might actually be an intermediate cause. But the point here is merely to observe that this familiar strategy presupposes the Markov condition. A third and more surprising consequence of the Markov condition is also worthy of note.

Consequence 3: In $X \rightarrow Y \leftarrow Z$, it is not necessarily the case that $X \perp\!\perp Z \mid Y$.

Since a node with two arrows pointing directly into it is known as a collider, this can be restated as: conditioning on a collider can create probabilistic dependence.

For example, recall the Vietnam era draft, in which men were issued draft numbers that were then randomly selected. Let X represent whether a person’s draft number was called, Y service in Vietnam, and Z whether the person was patriotic. Both X and Z are
causes of \(Y \), but since \(X \) is generated by a random process, there is no causal connection between \(X \) and \(Z \). Nevertheless, \(X \) and \(Z \) may be dependent \textit{conditional} on \(Y \). Consider a man Joe who served in Vietnam \textit{despite the fact that his draft number was never called}. Plainly, the fact that Joe chose to go to Vietnam without being drafted will make us think it more likely that he was patriotic way back then. In other words, among those who are Vietnam vets, we would expect a negative correlation between being drafted and (pre-draft) patriotism.

Let us return, then, to the variable and case oriented approaches to social research, which as we saw tended to be associated with distinct types of causal models: linear and Boolean equations, respectively. These two types of causal models are in fact distinct types of parameterizations of Bayes nets. To understand what this means, it is necessary to understand an important consequence of the Markov condition; namely, that it allows the joint probability distribution of a set of variables to be written as the product of the probability distribution of each variable conditional on its parents. Thus, the probability distribution for the DAG in figure 2 can be broken down into \(P(ET) \), \(P(DPI \mid ET) \), \(P(EC \mid ET, DPI) \), and \(P(D \mid ET, EC) \). However, these probabilities can be specified in a variety of distinct ways. For example, if each of the variables has only two possible values (present or absent), then the probabilities could be given simply by indicating the probability that the effect is present given each possible combination of values of its parents. For example, for \(P(D \mid ET, EC) \), we might have \(P(d_1 \mid et_1, ec_1) = .15 \), \(P(d_1 \mid et_1, ec_0) = .35 \), \(P(d_1 \mid et_0, ec_1) = .25 \), and \(P(d_1 \mid et_0, ec_0) = .75 \).

The Boolean equation examined in the foregoing section is an example of just this sort of approach, except with the additional assumption that all of the probabilities are 1.
or 0. However, as Ragin (1987) points out, in actual case oriented research it often happens that cases having the same combination of values for the causes do not all exhibit the same outcome. In such circumstances, one could substitute a probability of the outcome for an absolute “yes” or “no,” or perhaps code probabilities significantly less than .5 as 0 and those significantly higher than .5 as 1. So in a Boolean approach, a parameterization consists simply of specifying the probabilities of each variable given each combination of values of its parents. But as was explained in the previous section, Boolean models are infeasible for examples involving variables—such as gross domestic product or unemployment rate—that may take on any one of a large number of possible values. Linear equations are a commonly used means for specifying probability distributions in such cases. For example, suppose that D, ET, and EC each have many possible values rather than only two. Then $P(D \mid ET, EC)$ might be specified with the aid of a linear equation like the following.

$$d = \alpha + \beta_1et + \beta_2ec + \epsilon$$

In this case, a parameterization would consist of specifying numerical values for α, β_1, and β_2, and a probability distribution for the error term ϵ. From a Bayes nets perspective, then, Boolean and linear models are distinct ways of specifying a probability distribution for a DAG.

Moreover, both approaches are consistent with the Markov condition, since the Markov condition is satisfied in any acyclic causal model in which the error terms are independent of one another (Steel 2005). Independent error terms are typically regarded as an important facilitating condition for causal inference in variable oriented research, since the failure of the condition may result from the presence of unmeasured common
causes. When unmeasured common causes are present, a natural way to proceed is to suppose that the Markov condition holds true of a more extensive DAG in which the omitted common causes are included (cf. Spirtes, Glymour, and Scheines 2000, chapter 6). For example, the method of instrumental variables used in econometrics (cf. Angrist, Imbens, and Rubin 1996; Lleras-Muney 2005) can be understood in this way (Steel 2008, pp. 175-181). Furthermore, the minimization strategy used in conjunction with Boolean models is a simple application of the Markov condition and of consequence 2 in particular. Recall that Ragin’s approach to inferring causal relationships from a truth table like that in figure 1 began by searching for minimizing matches. In a minimizing match, a change in the value of one variable makes no difference to the outcome, or probability of the outcome, so long as the values of the other variables remain the same. For example, consider the relationship between the D, DPI, ET, and EC. Suppose that each of these variables have only two possible values—present and absent denoted by 1 and 0, respectively—and let $P(D \mid ET, DPI, EC)$ be as represented by the table in figure 3.

<table>
<thead>
<tr>
<th>ET</th>
<th>DPI</th>
<th>EC</th>
<th>D</th>
<th>$P(d_1) > .5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>.15</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>.35</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>.15</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.35</td>
<td>no</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>.25</td>
<td>no</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.75</td>
<td>yes</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>.25</td>
<td>no</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.75</td>
<td>yes</td>
</tr>
</tbody>
</table>

Figure 3: Boolean minimization and the Markov condition.
In this table, once the values of ET and EC are known, learning the value of DPI makes no difference to the probability that D is present, in other words, $D \not\perp\!\!\!\!\perp DPI \mid \{ET, \ EC\}$. Given the Markov condition, therefore, we can conclude that DPI is not a direct cause of D. We could also formulate this table as a Boolean equation like those considered in the foregoing section by coding the outcome as a “yes” or “no” depending on whether or not the probability that D is present is greater than .5. Then an application of Ragin’s methods would yield the Boolean equation $D = \overline{ETEC}$, that is, D is expected to be present when and only when both ET and EC are absent. Again, this yields the result that DPI does not directly impact D. In addition, interpreting Ragin’s use of Boolean minimization in terms of Bayes nets has the significant advantage of clarifying just what causal inferences could be justified by such an analysis and under what circumstances. For example, one might be tempted to conclude from the table in figure 3 that DPI has no effect on D whatever. However, the table provides no basis for such an inference because it does not rule out the possibility that DPI indirectly impacts D through ET or EC. For example, the DAG in figure 2 predicts that $D \not\perp\!\!\!\!\perp DPI \mid \{ET, \ EC\}$ but nevertheless says that $DPI \rightarrow EC \rightarrow D$. Thus, the most we can infer from the table in figure 3 is that DPI is not a direct cause of D; it might be an indirect cause or it might be no cause at all. Moreover, from the table in figure 3 alone, we cannot conclude that ET and EC are causes of D, since the data in that table could be explained by D causing ET and EC or by the existence of an unmeasured common cause. Thus, the procedures for case-based causal reasoning recommended by Ragin are trustworthy methods for identifying direct causes only when (1) the potential causes are not effects of the outcome variable, and (2) the outcome and potential causes are not common effects of unmeasured
variables. Of course, failures of (1) and (2) are challenges for causal inference generally, not only for case oriented approaches. But that is merely an expectable consequence of the fact that these challenges can be explained in terms of the Markov condition and are independent of the particular choice of model.

The discussion in the previous paragraph relied on only consequences 1 and 2 of the Markov condition, but not consequence 3. Recall that consequence 3 asserted that conditioning on a collider may induce probabilistic dependence. This idea is closely related to something known as “selection bias.” Consider the following example of selection bias provided in *DSI*.

Suppose we believe that American investment in third world countries is a prime cause of internal violence, and then we select a set of nations with major U.S. investments in which there has been a good deal of internal violence and another set of nations in which there is neither investment nor violence. (1994, p. 128)

In this example, there are three variables at play—internal violence, U.S. investment, and inclusion in the sample—that are related as depicted in figure 4. In figure 4, inclusion in the sample is a collider, since it is an effect of both internal violence and U.S. investment. That is, the researcher’s decision about which nations to include in the sample is heavily impacted by the values of these two variables. And as the researcher does not consider nations not included in the sample, she is effectively conditioning on a single value of that collider. Hence, from consequence 3, we can infer that there may be a correlation between internal violence and U.S. investment in her sample even if there is no causal

3 Conditions (1) and (2) are similar to J. L. Mackie’s (1974) requirement of “causal priority,” which he proposed as a qualification to his INUS theory of causation. As both Ragin’s and Mackie’s proposals are elaborations of J. S. Mill’s (1851) methods of agreement and difference, it is not surprising that the two would be confronted by similar difficulties.
connection between them. Notice that if there were indeed no causal connection between internal violence and U.S. investment, then the Markov condition would entail that these two variables would be probabilistically independent in a sample that was not subject to selection bias.

![Diagram](attachment:image.png)

Figure 4: An Example of Selection Bias.

The upshot of the discussion in this section is that a number of central points of methodology of causal inference, such as those having to do with unmeasured common causes and selection bias, stem from very general considerations about the relationship between causality and probability articulated by the Markov condition. Such considerations, therefore, can be expected to be relatively insensitive to the researcher’s choice of causal model, whether it is linear, Boolean or something else entirely. In contrast, some methodological considerations are closely tied to specific modeling assumptions. For example, the use of the method of instrumental variables to estimate a causal effect depends crucially on the assumption that causal relationships are represented by linear equations. The main theme of this section is that Bayes nets constitute a good framework for understanding model-general challenges for causal
inference and thereby can be reasonably regarded as an underlying logic of causal inference.

Mechanisms and Causal Inference

Like case oriented researchers, advocates of social mechanisms also contrast their approach with “variable-centered” social science (Hëdstrom and Swedberg 1998, pp. 15-17). Proponents claim that mechanisms are a needed and effective means for addressing challenges that confront causal inference in social science, especially problems arising from unmeasured common causes (Elster 1983, pp. 47-8; Little 1991, pp. 24-5; Hedström and Swedberg 1998, p. 9). Elsewhere I have argued that mechanism proponents have not adequately explained how attention to social mechanisms can alleviate these genuine challenges for causal inference (Steel 2004). In this section, I discuss the concept of a social mechanism and then explain how, as I see it, attention to mechanisms can assist causal inference in social science.

Mechanisms in general are characterized as sets of entities and activities organized so as to produce a regular series of changes from a beginning state to an ending one (Machamer, Darden, and Craver 2000). Social mechanisms in particular are usually thought of as complexes of interactions among agents that underlie and account for macro-social regularities (cf. Little 1991, p. 13; Stinchcombe 1991, p. 367; Schelling 1998, p. 33). The paradigm example of an agent is an individual person, but coordinated groups of individuals motivated by common objectives—such as a corporation, a government bureau, or a charitable organization—may also be treated as agents for certain purposes (cf. Mayntz 2004, p. 248). Social mechanisms typically involve
reference to some categorization of agents into relevantly similar groups defined by a salient position their members occupy with respect to others in the society (cf. Little 1998, p. 17; Mayntz 2004, pp. 250-2). In the description of the mechanism, the relevant behavior of an agent is often assumed to be a function of the group into which he or she is classified. For example, consider the anthropologist Bronislaw Malinowski’s (1935) account of how having more wives was a cause of increased wealth among Trobriand chiefs. Among the Trobrianders, men were required to make substantial annual contributions of yams to the households of their married sisters. Hence, the more wives a man had, the more yams he would receive. Yams, meanwhile, were the primary form of wealth in Trobriand society, and served to finance such chiefly endeavors as canoe building and warfare. Although individuals play a prominent role in this account, they do so as representatives of social categories: brothers-in-law, wives, and chiefs. The categorization of component entities into functionally defined types is not unique to social mechanisms. Biological mechanisms are often described using such terms as “enzyme” and “co-receptor”. The terms “enzyme” and “co-receptor” resemble “chief” and “brother-in-law” in virtue of being functional: all of these terms provide some information about what role the designated thing plays in the larger system of which it is a part. In sum, social mechanisms can be characterized as follows. Social mechanisms are complexes of interacting agents—usually classified into specific social categories—that produce regularities among macro level variables.

This characterization of a social mechanism can be illustrated by another, more well-known example. Consider Thomas Schelling’s bounded-neighborhood model, which is intended to account for persistent patterns of segregated housing in spite
increased racial tolerance (Schelling 1978, pp. 155-66). In this model, the residents of a given neighborhood are divided into two mutually exclusive groups (e.g. black and white). Each individual prefers to remain in the neighborhood, provided that the proportion of his or her own group does not drop below a given threshold, which may vary from person to person. Meanwhile, there is a set of individuals outside the neighborhood who may choose to move in if the proportions are to their liking. Clearly, this model divides individuals into groups with which characteristic preferences and subsequent behavioral patterns are associated, and by these means accounts for macro regularities.

Advocates of social mechanisms are motivated in large measure by concerns about the possibility that a correlation may be due to an unmeasured common cause rather than a direct causal influence, a difficulty sometimes referred to as “spurious correlation” (cf Elster 1983, p. 47). This was one of the general challenges for causal inference described in the foregoing section, and it is directly tied to the fact that the Markov condition allows that a probabilistic dependence between X and Y can be explained by X being a cause of Y, Y being a cause of X, or the presence of some third variable that is a cause of both (or any combination of these possibilities). Thus, in social science research it is often difficult to rule out the possibility that a correlation between variables is explained by a common cause that was not measured, and hence difficult to provide strong evidence of a genuine causal impact. An elucidation of underlying mechanisms—sometimes called process tracing—is suggested by mechanism advocates as a solution to this difficulty.
In order to properly understand process tracing, it is important to be clear about its intended contrast. It is sometimes said that process tracing is utterly distinct from methods that endeavor to draw causal inferences from statistical data. For example, Alexander George and Andrew Bennett write that, “Process-tracing is fundamentally different from methods based on covariance or comparisons across cases” (2005, p. 207). Yet it is difficult to see how this could be so if process-tracing is to enable one to establish claims about cause and effect (Steel 2008, pp. 185-7). That is because merely listing a sequence of contiguous events is not sufficient to demonstrate causation. After all, how are we to know that the events in the sequence are related as cause and effect rather than as mere coincidences? The most straightforward answer to this question is that we distinguish between causal and coincidental sequences of events on the basis of prior knowledge of what, in general, causes what. For example, I infer that being bitten by mosquitoes in Mali caused Joe’s malaria because of my belief, in general, that mosquitoes in tropical climates are vectors of the Plasmodium protozoan that causes malaria. But if that is right, then it seems that process tracing already assumes a solution to very problem that mechanism advocates claim it can solve. That is, in order to use mechanisms to support causal inferences we already need to have a good deal of causal knowledge.

I suggest that a more adequate explanation of how process tracing is helpful for addressing challenges for causal inference depends on a better understanding of what process tracing should be contrasted with. The appropriate distinction is not between one method that relies on statistical data and another that can proceed independently of such information. Rather, the distinction is between what I call direct and indirect causal
inference. Direct causal inference attempts to infer the causal relationships among a set of variables by examining the probabilistic relations among those same variables. By contrast, indirect causal inference attempts to learn the causal relationships among a set of variables by examining the causal relations among a distinct yet related set. In process tracing, the distinct yet related variables represent features of component parts of the larger system of interest. The usefulness of process tracing, then, rests on the possibility that the causal relationships among the components are more directly accessible than those among the macro-features of the system. Let us consider this idea in more detail.

Suppose that one is interested in the causal relationships among a set of variables V that represent macro-features of a system S. The system might be an economy, an organism, or a machine. The variables in V might represent such things as inflation and unemployment if S is an economy or mosquito bites and malaria if S is a person. One strategy for learning about the causal relationships among the variables in V is by means of statistical data concerning those variables. I call this direct causal inference (or direct inference for short), since the strategy focuses directly on the variables of interest and the probabilistic relations among them. Direct inference can be represented schematically as follows depicted in figure 5. For example, suppose that V contains variables representing federal deficits, inflation, economic growth, interest rates, and unemployment. Suppose, moreover, that the chief concern is to estimate the effect of federal deficits on economic growth. Then direct causal inference might proceed by comparing carefully matched periods that differ with respect to federal deficits. Attempting to infer the causal relationships among the variables in V from statistical data concerning them together with the Markov condition would also fall into the category of direct causal inference.
Process tracing does not focus directly upon the statistical relationships among the variables in \(V \), but rather upon the components of \(S \) and their configuration. This can be depicted schematically as shown in figure 6. Of course, direct inference and process tracing are not mutually exclusive: both could contribute to knowledge of the causal relationships among the variables in \(V \).\(^4\) Moreover, direct inference will almost certainly be an important source of knowledge of causal generalizations concerning the components. However, that inference would involve a set of variables distinct from \(V \). Let \(C \) be a set of variables representing features of the components. Process tracing, then, exploits the possibility that the causal relationships among \(C \) may be more easily learned than those among \(V \). One way this could be is if it is possible to perform experiments on the components, but not the system as a whole. For example,

\(^4\) Danks (2005) gives an interesting normative proposal for how conclusions about the causal relationships among distinct yet related sets of variables can be integrated within a Bayes nets framework.
experimental economists can perform randomized experiments involving individuals or small groups but not entire economies. Similarly, ethical considerations prohibit an experiment in which humans are exposed to malarial mosquitoes, yet it is possible to experimentally study, say, the transmission and action of the *Plasmodium* protozoan in animal models or in vitro. Even when experiments cannot be performed on the component parts of the system, there may be better observational data with regard to the relevant features of the components than for the system as a whole, for instance, because larger samples of more accurately measured data are available. Or it may be that the possible confounders have been more exhaustively listed and measured with regard to the components than for the macro-features of the system. In short, there may be a variety of practical reasons why the causal relationships among the variables in \(C \) can be more directly ascertained than among those in \(V \). And when that happens, indirect inference is a reasonable approach to pursue.

Process tracing is most easily noticed in research, such as Malinowski’s study of the Trobriand Islanders, in which data necessary for direct inference is not available, but examples of process tracing can also be found in conjunction with direct inference. For example, consider John Donohue and Steven Levitt’s (2001) essay, “The Impact of Legalized Abortion on Crime.” Donohue and Levitt argue that the legalization of abortion in the US following the 1973 *Roe v. Wade* decision is the most significant factor responsible for the decline in US crime rates in the 1990s. Although it may seem surprising that legalizing abortion could affect crime rates two decades later, Donohue and Levitt suggest a plausible mechanism linking the two (2001, pp. 386-9). A woman chooses to have an abortion when the child would be unwanted, for example, because she
would be unable to adequately care for and economically support a child or an additional child. Donohue and Levitt cite a variety of studies that report correlations between being raised in adverse family situations and criminality in early adulthood (2001, pp. 388-9).

Thus, Donohue and Levitt propose that the legalization of abortion in 1973 resulted in a birth cohort that, when entering its prime crime age 18 to 24 years later, contained a smaller proportion of individuals disposed to criminal behavior. Donohue and Levitt give several lines of statistical evidence for this hypothesis. For example, they show that the drop in crime rates occurred earlier in states that legalized abortion prior to Roe v. Wade, and that the initial decrease occurred in categories of crime disproportionately committed by those in the 18-24 age group (2001, 395-9). Not only does Donohue and Levitt’s study illustrate the combination between process tracing and causal inference based on statistical data, it also illustrates the role of statistical data in process tracing itself. For example, the causal generalization that unwanted children are more likely to become criminals is obviously a proposition that must be tested by reference to statistical data.

Moreover, Donohue and Levitt’s study illustrates how a closer approximation of experimental data might be attainable with regard to the mechanism than for the system as a whole. Some studies on the effects upon criminality of being an unwanted child focused on locations in which governmental approval was required before an abortion was allowed, as was once the case in some parts of Scandinavia and Eastern Europe (2001, p. 388). These studies found higher rates of criminal activity among children born to women who requested but were denied access to abortions than among the children of women of similar socioeconomic status who did not request abortions. These studies
amount to a natural experiment involving an intervention directly on the proposed cause, namely, access to abortion among women who desire to have one. The closest thing to a quasi-experiment at the macro-level is Donohue and Levitt’s comparison between earlier and later legalizing states, which found that the early legalizing states (Alaska, Hawaii, California, Washington, New York) experienced a correspondingly earlier drop in crime rates. However, as Donohue and Levitt point out, the early legalizing states also differed some other potentially relevant respects such as the rate of abortions after Roe v. Wade (2001, pp. 395-396). In addition, the small number of early legalizing states and the relatively small number of states altogether would make a statistical analysis more tentative. Thus, this example illustrates the point made above that, for a variety of reasons, data might allow for more firm conclusions concerning the causal relationships at the level of mechanisms than at the level of the system as a whole. In such circumstances, indirect inference is a reasonable approach to pursue in attempting to establish a causal claim. Of course, it does not follow from this that process tracing always necessary or even helpful for causal inference in social science. In some cases, the data may support a strong conclusion on the basis of direct inference and in some cases data needed for process tracing may be largely absent. But I think it is fair to say that process tracing, understood as indirect causal inference, is an important strategy for supporting causal conclusions in social science.

Conclusions

Learning about the causes and effects of social phenomena is an important but very difficult task. This chapter has described three approaches to studying causation that are
found in social science: variable, case, and mechanism oriented research. My aim has been to clarify the relationships among these three approaches. I suggested that variable and case oriented research can be fruitfully considered in terms of their association with distinct types of causal models—linear and Boolean equations, respectively—that nevertheless share some important features that are articulated in Bayes nets approaches to causation. The distinction between model-specific and model-general aspects of causal inference, I propose, is a useful basis for understanding the idea that a shared logic underlies these two approaches. Finally, I considered the claim that mechanisms play an essential role in overcoming challenges to causal inference in variable and case oriented research, such as the existence of unmeasured common causes. I suggested that this claim is best understood by reference to what I call indirect causal inference. Tracing mechanisms differs not in eschewing any reliance on statistical data; instead process tracing works by focusing attention on a distinct but related set of variables for which better data may be available.

References

