Background

International cooperation in agricultural research and development since World War II has opened the doors for international exchanges of germplasm and information. This helped increase the agricultural productivity in both developed and developing countries (Martin and Baumgardt, 1991). Emerging biotechnologies present a new era in technical change in agriculture worldwide.

Agricultural biotechnology provides new methods for responding to world food production problems. Many of the commodities important to developing countries are largely ignored in the private biotechnology research programs of industrialized countries, so public efforts are needed to ensure that the promise of increased food and fiber production can be made a reality for those who need them most. One objective of the Agricultural Biotechnology for Sustainable Productivity (ABSP) project is to mutually enhance U.S. and developing country institutional capacity for the use and management of biotechnology research to develop environmentally-compatible, improved germplasm (Bio Link, 1991).

The crop plants of today had their origins in the fields of early farmers who selected plants with desirable traits and maintained cultivars to meet agricultural needs. Controlled matings (hybridization) of plants through the sexual process is the cornerstone of classical plant breeding. By repeated hybridization and selection, new traits have been introduced into varieties already proven successful in agriculture. However two major limitations exist with classical plant breeding. The first is an extraordinarily large degree of variability from which a low frequency of desired plants must be identified. Second, the gene pool is generally limited to the same or closely related species. Much of modern biotechnology is devoted to overcoming these limitations, by speeding up the reproduction of elite plants of known desirable genetic characteristics, and by identifying useful genes and finding techniques to introduce them into plants that could not occur through classical breeding (ABSP, 1991).

Project Focus
Tissue culture has been practiced for thousands of years as a means of regenerating large numbers of whole plants from cuttings or slips as an alternative to propagation from seeds. Biotechnology has resulted in the development and use of hormones and nutrient media to enable recalcitrant species to be regenerated and otherwise improve tissue culture. Micropropagation is a type of tissue culture in which plant cells are cultured in the laboratory to multiply them and their constituent genes. The multiplied cells can then be used to produce literally millions of regenerated genetically identical plantlets for distribution to plant breeders or farmers. Although capabilities with tissue culture have developed rapidly over the past 15-20 years, many developing countries still do not have effective capacities. The ABSP project sought to provide enhanced developing country capabilities, particularly in micropropagation, because of their importance in producing virus-free stocks and as a component of a broader technology program (ABSP, 1991).

Under the ABSP project two research collaborations were developed to enhance commercial micropropagation, stabilize local and regional supplies of targeted food crops and support an export market to provide employment and foreign exchange. The first was an agreement between DNA Plant Technology Corporation (DNAP) in USA and Agribiotechnologia de Costa Rica (ACR) in Costa Rica in 1991 to work collaboratively in micropropagation of tropical crops for commercial planting stock. DNAP is a plant biotechnology company with a laboratory and business office now in Oakland, California, with interest and expertise in technology-derived plant products. Similarly, ACR is a private micropropagation company with laboratory and farm facilities in Costa Rica and an exporting business in the area of tropical plants and ornamentals. The two companies entered into an agreement in April, 1992, to work together to develop technology and seek business opportunities in the field of micropropagation of certain lines of banana, pineapple, coffee and ornamental palms. The specific objectives of this collaborative project were to: (a) develop and/or adapt liquid culture regeneration technology for targeted tropical crops (i.e., pineapple, banana, coffee, and ornamental palm) at DNAP; (b) provide technical training to ACR staff at DNAP; (c) install equipment at ACR; (d) transfer technology from DNAP to ACR including the training supervision of personnel at the site; (e) refine and extend regeneration protocols including in vitro selection systems at DNAP; (f) field test and evaluate micro propagated materials at ACR; and (g) commercialize the products.

In October 1992, DNAP entered into a separate sub-agreement with Pt. Fitotek Unggul in Jakarta, Indonesia to work on pineapple micropropagation via liquid cultures. The goal of this collaborative agreement was similar to that of DNAP-ACR collaboration except that work was focussed on pineapple. Specific objectives were to develop methods for micropropagation in liquid cultures and transfer technology to Fitotek as they were being developed to enter into commercialization mode as soon as possible.

Evaluation Questions
In October 1996, the management of ABSP decided to undertake an evaluation/impact assessment of this collaborative work in the area of micropropagation. The ABSP management was interested to find out to what extent the project goals had been achieved and why or why not? Additionally, the ABSP management was interested to determine the types of impacts the project has had beyond the immediate players involved.

Evaluation Design

This evaluation is an attempt to systematically collect information about the activities, characteristics, and outcomes of the micropropagation work under the ABSP project to make judgements about the project and inform decisions about future programming. It is recognized that technological impact assessment is complex. This study attempts to assess the first-order impacts of new technologies by commodity. This evaluation is utilization-focused, with consideration throughout on its intended use by intended users (Patton, 1997).

Stake’s (1967) countenance model, a framework that involves the full description and judgement about a project’s outcomes, provided the conceptual framework for planning this evaluation. According to this model, evaluators would analyze information by looking at the congruence between intents and observations, and looking at dependencies (contingencies) of outcomes on transactions and antecedents and of transactions on antecedents. Data collected are compared to accepted standards of excellence and evaluative judgements are made.

This evaluation followed a descriptive design. It utilized qualitative approaches to data collection and analysis. Both primary and secondary data were utilized. These included personal interviews with researchers, policy makers and Extension professionals; review of research reports; and site visits to observe the performance of micro propagated plants.

Evaluation Instruments and Procedures

First, an extensive review of ABSP Annual Reports with special reference to Micro propagation work accomplished during the project was conducted. Based upon this review and the objectives of the DNAP-ACR and DNAP-Fitotek collaborative proposals, a list of summative evaluation questions were developed (see Appendix A). The evaluation questions contained both open-ended and closed-ended questions. A draft of these questions was reviewed by the ABSP staff and modifications were made based on the feedback. These questions were used to interview project personnel at DNAP, ACR and Fitotek, as well as record observations during the site visits.

The program evaluators traveled to DNAP facilities in Oakland, California and ACR facilities in Costa Rica between December 1-7, 1996. They traveled to Indonesia during December 13-21,
1996. Project related scientists and company officials were interviewed. (See Appendix B for the list of persons interviewed.) Laboratory facilities and field test sites were visited to observe the status of micro propagated plant growth and development. University faculties, Ministry of Agriculture officials, commodity associations, plantations, and selected farmers were also visited and interviewed.

The information for this evaluation was gathered through: (a) a review of the ABSP Annual Reports that were received from the 1991 thru 1995, (b) site visits to DNAP facilities in Oakland; ACR laboratories and field test sites Costa Rica, and Fitotek Unggul laboratory and field site in Indonesia; (c) personal interviews with research scientists and company personnel in Oakland, Costa Rica and Indonesia, and (d) observation and interviews with related industry people including farmers, plantation workers, and university and Ministry of Agriculture personnel.

All information gathered from literature review, interviews and field notes were transcribed into WordPerfect documents. The information gathered was carefully reviewed and synthesized. Value judgements were made based upon the information gathered and findings are presented below.

Major Findings

The objectives of ABSP project’s micropropagation of tropical crops for commercial planting stock were to: (a) develop high frequency embryogenic cell cultures for targeted crops as a prelude to developing large scale micropropagation systems; (b) genetically improve elite, but limited planting stock; and (c) use technology and planting material (a&b) as base for commercial production of targeted crops. The underlying belief was that enhanced commercial micropropagation and production would permit more stable local and regional food supplies of targeted edible crops and support an export market that would provide foreign exchange and jobs.

The ABSP project started in January 1992 with DNAP based in New Jersey, and Maro Sondahl the principal investigator; the Fitotek project began in October 1992. In 1993, after about one year of the ABSP funding, DNAP consolidated its operations, the New Jersey facility was closed and the company was moved to Oakland, California. The east coast operation had focused on micropropagation. The west coast had focused mostly on transformation and shoot propagation. The transition from New Jersey to California occurred over several months. Some plant materials were shipped before they were fully developed. The collaborative research for the ABSP project was transferred through early 1993, and administrative leadership shifted afterwards. This meant a virtually total change of DNAP staff involved, because people who had worked on the project in New Jersey did not move west.
As a result of organizational and personnel changes within DNAP, Dr. Neal Courtney-Gutterson took over the project. Dr. Dean Engler, assisted by Bill Hanson, worked on banana aspects. Dr. Ebrahim Firoozabady, assisted by Julie Nicholas and York Moy, worked on pineapple and ornamental palm. The coffee work was left behind in New Jersey. (We were not sure whether or not Dr. Maro Sondahl who originally develop the Micro propagation technique for coffee plant continued the work with Dr. Clemenish Noriega with no continued funding from ABSP project.)

ABSP experienced a budget cut around March 1994. This meant cuts in this project. Everything except the things that looked most promising were dropped. At this point, the palm work was dropped. A good multiplication method for selected species of peach palm had already been developed at this point and further palm work was left to ACR.

I. DNAP/ACR Collaboration:

DNAP and ACR worked together to develop and/or adapt liquid culture regeneration technology for banana, pineapple, coffee and selected species of ornamental palms. ACR provided the needed germplasms to DNAP. DNAP developed and utilized bioreactor technology for Micro propagation. Following is the status of micropropagation work for each tropical crop under study:

Pineapple: Pineapple is increasingly important as an export crop for Costa Rica and Central America. Production has shifted there from Hawaii. Central American pineapple is raised for fresh market in U.S. and in Europe. Costa Rica has about 5,635 hectares of pineapple and in 1995, it earned about US$59.8 million.

Tissue culture in pineapple can help to reduce mealybugs, nematodes, wilt disease, heart and root rot. Mutation is the main problem with tissue culture. Oscar Arias, President of ACR was well aware of pineapple tissue culture literature from U.S., India, and France. He was already working in pineapple before the ABSP project and was eager to do more work because of the potential to lower cost of propagation. Pineapple's high planting density -- 60,000 plants per hectare -- means that tissue culture needs to be cheap for growers to use it.

DNAP provided both shoot and embryo regeneration cultures. DNAP believes that embryo regeneration using bioreactors is viable, but ACR found that the shoot-based system using periodic immersion fit better for them. Staff at ACR indicated that Ebrahim Firoozabady did a good job of developing a system of Longitudinal Leaf Regeneration (LLR) for pineapple and in teaching them to use it.

A 10 liter bioreactor has a capacity of 6000 plantlets, but their size is not uniform. Once opened,
the bioractor environment is contaminated and the process must be stopped. The use of periodic immersion with filter units (PIFU) for micropropagation of pineapple in liquid media was proven efficient. They can be useful in both micropropagation and for keeping clean stock. For these reasons, ACR uses LLR system with PIFU during initial steps of pineapple multiplication, i.e., for about 4 months, then they finish plantlets with traditional methods. In that way they can increase stock with little risk of contamination. They use containers holding about 500 ml. They allow a 1:5 increase in plantlets during 4 months. The plantlets are then placed in baby-food jars for additional growth.

Plantlets are planted at about 300 per square meter for three months for hardening in the nursery, then about 200 per square meter for three to four more months in beds in field with some shed. Then 7 to 15 months growing in the field. Finally, the plants are ready for flower induction or shoot induction. About 15 months from shoot to fruit; 2 years or more from lab to fruit.

Field testing is especially important in pineapple due to high risk of mutation. Growers may lose confidence if something goes wrong with the new plants. But the plants developed through somatic embryogenesis and planted in September 1995 are still in the field and have not yet been evaluated. Plantlets developed from somatic bioreactor and LLR/PIFU propagation method are being field tested (see photos). Preliminary results indicated a much higher than usual rate of variations in plant and fruit size, spines, lateral shoots, discoloration, etc. for somatic embryos. So, the system is not yet proven. The next steps needed to go would be to combine selection of promising families from field trials and genotyping them in the lab to understand the differences.

To sum up, DNAP assisted in developing technology using somatic embryogenic method of micropropagation. They developed the first published article on somatic embryogenesis. After project close in September 1995, ACR and DNAP has had limited communication. DNAP recently sent some plants for field testing.

Banana: Banana is the most important export crop of Costa Rica. It is farmed on 52,000 hectares and in 1995 it generated an income of US $693.6 million.

Panama disease caused by fusarium wilt, bunchy top, nematodes, ‘apical’ nursing, and mosaic virus are major problems of banana. Tissue culture is especially important in banana as the plant uses vegetative propagation and there is a strong chance of disease contamination involving vegetative propagation. Tissue culture plants yield about 30%-35% higher than the conventional plants and do not require any nematicide for a season. In addition, the crop is very uniform as compared to other propagation methods.

In 1992, banana micropropagation protocols were adapted to bioreactor vessels using liquid culture. Some banana shoots were produced from bioreactor cultures, but DNAP was unable to
eliminate contamination. The researchers did prescreen shoot cultures to select axenic material for induction of embryogenic callus to improve quality of embryogenic tissue produced. They were unable to produce finely divided suspensions, so they shifted from bioreactors to filter units, within which embryogenic tissue has been proliferated with a doubling time of less than two weeks. The development of a reliable embryogenesis-based regeneration method for banana is not yet achieved. The project faced two major difficulties-- the published research could not be replicated, and bacterial contamination problem was not overcome. It was felt that in order to continue banana work, more sophisticated equipment is needed to measure oxygen and pH levels and perhaps more work with bioreactors to understand the basics. Although a successful protocol was not developed through the project, both DNAP and ACR have continued their banana work even after the project ended.

During the field visit, Dr. Oscar Arias indicated that, basing efforts on work of Dr. Novak, two somatic embryogenesis varieties look promising. He also indicated that using a very young male flower works best to induce callus. This is much cleaner than the tradition of using rhizomes for propagation.

Coffee Costa Rica has an intensive system of coffee plantations. It has an area of 150,000 hectares and in 1995, it accounted for US$ 417 millions in export earnings. The Coffee Growers Association has specific recommendation for growing coffee plants. On an average, Costa Rica has higher coffee yields per hectare than Columbia and Brazil.

The technology for micropropagation of coffee was already developed at the beginning of the ABSP project through the work of Drs. Maro Sondahl and C. Noriega. Dr. Maro Sondahl began the micropropagation work in coffee during 1993, and several hundred plants were made available to ACR for field evaluations. When organizational changes in DNAP occurred, the coffee work was discontinued. ACR is field testing the coffee plants from the early work. We observed some variations in plant growth and leaf patterns but as the plants are not yet mature, no specific conclusions could be made at this time.

Palm: There had been no prior palm research, so some exploratory work was conducted. Of the four palm species under consideration, peach palm appeared most promising. DNAP work on palm was discontinued in 1994, at which time DNAP provided ACR with a good multiplication method for peach palm, allowing ACR to continue work in that area.

Training of technical personnel from ACR

DNAP provided technical training to ACR staff in the use of short-term bioreactor technology. In addition to the lab procedures, the training has increased staff understanding of transformation technology. Three senior scientists from DNAP (Neal, Dean and Ebrahim) have spent time at
ACR providing technical training on bioreactor technology as well as learning about problems of Micro propagation. Similarly, senior staff of ACR (Ileana Salazar, and Jose Antonio) spent time at DNAP learning about bioreactor technology. Findings from personal interviews indicated that the DNAP/ACR collaboration was found to be more co-learning than one-way technology transfer.

Installation of equipment at ACR

DNAP adapted standard laboratory bioreactor equipment to achieve a lower cost set-up that is more practical for commercial scale production and developing country economies. However, ACR believes bioreactors pose too great a contamination risk, especially in tropical environments, and they have not produced consistent results so they do not plan to use them.

II. DNAP/Fitotek Collaboration:

The goals of this collaboration were to develop methods for pineapple micropropagation in liquid cultures and transfer technology to Fitotek as it is being developed to enter into commercialization mode as soon as possible. The project started in October 1992 and lasted for 3 years.

The DNAP-Fitotek collaborative work started to capitalize on initial development of bioreactor methods for axillary shoot bud multiplication of pineapple in a liquid culture system. The bioreactor system appears to be feasible for commercial production. Its benefits are increased multiplication rate of propagated plants without increased requirements for physical facilities or personnel. The Periodic Imersion (PI) system reduced labor, raw materials, electricity and space. Compared to traditional tissue culture practice, the bio-reactor technology could produce pineapple plants 40% cheaper. With such encouraging results, Fitotek built an additional room with several bioreactor units in it and has a capacity of producing 12 million plantlets a year. However, we did not see any ongoing micropropagation work during our site visit. Fitotek felt that there was a need to improve some technical aspects of the bioreactor technique including: (i) additional equipment installment (air conditioning), (ii) reduction of the number of total loss of plantlets, (iii) control contamination, and (iv) develop a continuous production system.

Fitotek is conducting clonal fidelity tests in two locations-- Subang, West Java and Lampung, South Sumatra. We visited the Lampung site to observe the performance of plants derived from bioreactor and solid culture. Plants here looked uniform (see photos). They were ready for flower induction. Many plants had spines, but we were told that it was not as much a concern here as it was in Costa Rica. Plants looked healthy. We were told that the researchers at Fitotek are interested in looking at the (a) size and shape of the fruit, (b) acid content, (c) fiber content,
and (d) sugar content; these were the major characteristics of pineapple for canning industry. No conclusions could be made as the plants are still at the field test stage.

Fitotek is not currently producing plantlets using bioreactors. They indicated us that the technology is now ready if there is an effective demand. The demand for pineapple fell down in Indonesia. There has been a great demand for ginger in Indonesia and Fitotek was able to develop micropropagation techniques to produce ginger plantlets.

Dr. Elda Adiningrat was the principal researcher at Fitotek. Dr. Kariana Safarwan also worked in pineapple and later in potato. Dr. Nakamura, a post-doctoral fellow from DNAP New Jersey, joined Fitotek to work on pineapple. Her work was considered as the key to success at Fitotek.

Dr. Maro Sondahl of DNAP was very helpful to provide needed technical training and support. He visited Fitotek twice to install the trial equipment and provide training to staff. Dr. Neal Gutterson also visited Fitotek twice and helped install two vessel type bioreactor. Altogether, three Fitotek staff received training from DNAP. Management of Fitotek greatly appreciated the assistance received from Dean Norton and Bruce Bedford in developing the database for the project. They feel that DNAP did not provide as much opportunity for training the Fitotek staff as they did for ACR. Similarly, they indicated some communication problems with DNAP in the beginning.

In Summary, Micro propagation of pineapple was the most successful area for transfer of immediately useful technology. DNAP developed and provided a system using longitudinal leaf regeneration, periodic immersion within a bioreactor for about four months, then finishing plantlets with ACR's usual methods using baby-food jars. In that way, ACR can increase stock more rapidly but minimize risk of large-scale contamination.

This project was unable to provide the hoped-for banana technology. There were problems with replicating published research and with bacterial contamination. Both DNAP and ACR, however, have continued banana work and are optimistic about long-term success.

The work on coffee was prematurely dropped due to personnel and organizational changes within DNAP. A small number of coffee plants are being field grown at ACR. Results will determine whether ACR will pursue micropropagation work in coffee. Similarly, the micropropagation of selected species of ornamental palms was dropped due to budget cuts within ABSP project. ACR continues some research with coffee and peach palm utilizing its own internal resources.

Refinement and extension of regeneration protocols including in vitro selection systems at DNAP was not accomplished during the project for several reasons: (1) for banana, micropropagation problems must be overcome before field testing and evaluation can occur; (2)
for pineapple, plantlets from somatic bioreactor and LLR/PIFU propagation are in the field ready for induction. The preliminary results indicate a much higher than usual rate of variations in plant size, fruit size, etc. for somatic embryos. At least one additional year is required to fully evaluate the plant’s performance including fruit size, shape, uniformity, acid and fiber content. (3) Coffee plants from somatic embryosis are currently in the field but coffee plants take three years to produce, so results are inconclusive; and (4) the funding was discontinued for the collaborative work in 3 years. As a result, none of the micropropagation work is ready for commercialization to this date. This project did not accomplish the goal of commercialization of products but it did encourage ACR and Fitotek to consider strategic planning for their firms.

Agribiotechnology Related Impacts of the Project:

An attempt was made to determine whether the collaborative work between ACR, Fitotek and DNAP under the ABSP project has affected any local linkages such as the relationships with the ministry of agriculture, university system, local commodity organizations or international research centers. We met with university officials, Extension staff, commodity organization, farmers and Ministry of Agriculture officials to learn about the broader context in which biotechnological interventions will be made. Following is a summary of findings from the personal interviews and site visits.

Costa Rica: There is a move in Costa Rica to downsize government and to privatize many of its functions. The Ministry of Agriculture will continue providing regulatory functions but Extension related work could move toward privatization for efficiency reasons.

Extension in Costa Rica is moving from a Ministry of Agriculture function to commodity associations. In most cases, the (commodity) associations develop varieties, provide extension services, work on quality, disease and pest problems; help with commercializing research results. They are supported through a "tax" on products sold. For example, in banana that amounts to about 5 U.S. cents for each box of bananas and provides a budget of about $5 million/year. They can fund some cooperative projects. Associations exist for banana, coffee, irrigated rice, flowers and sugar cane. Although there is not a pineapple association, some similar assistance is available to pineapple growers from the multinational companies like Dole, Chiquita, etc.

ACR works closely with growers and commodity associations. For example, Banana Growers Association knows the work of Oscar Arias in micropropagation. Oscar Arias, being a former faculty member at the University of Costa Rica, knows many researchers there. It seems, however, that University
of Costa Rica regards ACR as competitor for resources. We were told that ACR has bought virus detection services from the University of Costa Rica. The ABSP project has helped strengthen ties between ACR and the University of Costa Rica.

Biosafety conferences were helpful to Ileana Salazar. They helped her go to speak to the Minister of Agriculture about biosafety. Now she is one of few people in Costa Rica who know about biosafety, and she is starting to be known among officials. Travel seminars and conferences were very helpful in networking.

Sylvia Salazar, an attorney who has worked for the University of Costa Rica for 10 years, is an intellectual property specialist in Costa Rica. She worked in an Extension-type role. Currently on leave from the university, Sylvia works out of her home as a consultant with the Regional Intellectual Property Project of the Permanent Secretariat for Economic Integration (SIECA) in Guatemala City which has an AID grant. She and a Guatemalan counterpart are coordinating the effort.

Costa Rican current patent law provides one year protection for foods and agricultural chemicals; animals and plants are excluded from patent protection. The Office of Seeds which is a fairly autonomous entity, is working for regulations on plant varieties, but not through a plant registration process instead of patent protection. This effort is supported by grower associations. According to Sylvia, the Ministry of Justice and Congress each presented patent law amendments that are currently being studied.

Sylvia thinks that protection benefits producers because it provides them with better varieties. Her views have changed over the past five years or so. She feels that Costa Rica and other developing countries do not have the capability to use patents for plant protection, however, because they lack the ability to examine the genotype.

Indonesia: Although there has been no formalized linkages between Fitotek and other local institutions, researchers and policy makers were well aware of Fitotek’s work in the area of micropropagation. There was a very good relationship between Fitotek and Central Research Institute for Food Crops (CRIFC) in Indonesia. The scientists at Inter University Center for Biotechnology of Bogor Agricultural University, including the Dean of Agriculture, were informed about the micropropagation work done at Fitotek Unggul. Dr. Effendi Passandaran, Director of Center for Agricultural Programming at Ministry of Agriculture was supportive of utilizing biotechnology to increase crop productivity specially in the transmigration areas.
We briefly met with Dr. Syafrika Munuwoto, Dean of Agriculture at IPB Bogor. She briefed us about the status of Indonesian agriculture. Fifty-six percent of Indonesian population is engaged in agriculture and nine out of ten farmers have less than elementary level education. The Ministry of Agriculture provides seed and planting materials to all farmers. Several institutions of higher education in agriculture (26 public universities and over 1100 private agricultural colleges and universities) are engaged in agricultural education. Dean Munuwoto also indicated that she knows about Fitotek; IPB Bogor also works together other private companies like Agro. She feels that they now operate in a global economy and it is ok for state universities to work together with private companies to develop new technology.

We also visited the Inter University Center for Biotechnology at IPB, Bogor. They are working in several biotechnology projects. They are holding an international conference on biotechnology at IPB in June 1997. We feel that scientists working under the ABSP project could share their findings in such international gathering.

Dr. Achmad Mudzakir Pagi, Director of CRIFC and Dr. Muhammad Herman were involved with ABSP project. Dr. Herman stayed at Michigan State University for 2 years working at Dr. Sticklin’s lab. Dr. Herman has a small research grant from ABSP to work on ginger and to work on a regeneration study of certain cultivar of sweet potato.

Dr. Pagi indicated that CRIFC was able to prepare the “final draft” document on plant Variety Development Law for Indonesia. Similarly, Dr. Herman prepared a draft for “Biosafety Regulation”. The law pertaining to Biosafety containment is being completed by March, 1997. They indicated us that the Indonesian government is planning to create a “Center for Agricultural Biotechnology” in the near future.

Conclusions and Recommendations

References:

