Contextual Geometric Structures

Modeling the fundamental components of cultural behavior

Bradly Alicea
http://www.msu.edu/~aliceabr/
What is the essence of culture?

Heredity (beliefs that propagate)? Plasticity? Self-reference?

Structuralists, post-structuralists: “structures” transcend cultural transmission and cognition, but fundamentally shape that features of culture.

Structures are ubiquitous:
* language and concepts (natural world defined as sets of discrete oppositions).

* settlement patterns, architecture (can define or sharpen distinctions between cultural groups, but can also act to integrate cultural traditions -- syncretism).

* underlying constraints (specifies how cultures CANNOT adapt).
Hybrid (Soft Classification, LCS) Model

Two components of this model:

1) Soft classificatory kernel

* soft classification (all phenomena = degree of membership).

* halfway between light and dark (50% light, 50% dark). Attributes of both.

2) Lagrangian Coherent Structure (LCS) model

* second-order Lagrangian (LCS = recently discovered Physical model).

* hydrodynamic-inspired field model. Currents lead to patterns of movement and aggregation.
Example of Soft Classification

Each object being classified = continuous membership function (0-100%) in each category (n-tuple space).

* categories are not transitive nor independent.

EXAMPLE: car crash in a 3-tuple space.

* membership functions: vision (80%), audition (80%), olfaction (10%).

* creates a bounding polygon (all possible responses to sensory stimuli) within which all individual experiences will reside.

In general, subspaces can be defined by culture-specific, context-specific instances.
Soft (fuzzy) classification:

* membership function on interval \(\{0,1\} \). \textbf{NOT} a probability.

* does \textbf{NOT} require transitivity, distributivity, or symmetry
How does the brain “represent” sensory information to perform a cultural “operation”?

* n-tuple surfaces with a soft classification scheme (all possible combinations).

* Cultural phenomenon: symbol, practice, or artifact.

* What is the membership of cultural phenomenon x in this space?

Conceptual Automata

Inspired by the concept of Habitus (Pierre Bourdieu, “Logic of Practice”):

* definitions: “durable, transposable dispositions”….”generative”….”organizes practices and representations adaptively”.

Computational objective: a scheme that transforms physical phenomena into operations that can be compared in an evolutionary context.
Lagrangian Coherent Structures (LCS)

Q: How can we quantify dynamic, emergent structures? Use Lagrangian Coherent Structures (LCS) approach.

* hard to capture higher-level relationships using simple pairwise comparisons or aggregate measurements (curse of dimensionality).

* swarms, herds, colonies, and flocks: all share a common set of principles – self-organized behaviors (weak, strong emergence).

* behaviors, formation of structure occurs in a medium (air, liquid, etc) and so are analogous to or explicitly involve flows (mechanical representation).
Original Application Domain:

Ecology/Evolution:

May also be used to “embody” culture (and its evolution) in a quasi-geography……

* structures stored on landscapes (context)……
Lagrangian Coherent Structures (LCS)

Key concept for LCS: finite-time and finite-size Lyapunov exponents (FTLE or FSLE):

* **FTLE** = evolution of collective particle trajectories over time (find distance for given time interval).

* **FSLE** = evolution of collective particle trajectories across space (find time for given set of distances).

LCS field models are a flexible dynamical system:

* Lagrangian representation of kinematics (special case of classical mechanics). Compare with Eulerian, Hamiltonian representations?

Points in a flow have an initial position. The relationship between these points deformed (flow travels apart) over time:

* distance between points quantified using Lyapunov exponent.

* ridges form in flow map over time/space = coherent structures.
Lagrangian Coherent Structures (LCS)

Finite Lyapunov exponent (related to γ, key parameter in dynamical systems) defined by:

Lyapunov exponent (scalar value)

Movement of particles (advection)

Coordinate system (interpolation)

A matter of diffusion…..

* particles diffuse across a coordinate system at rate r.

* if underlying order, particles will aggregate into larger-scale structures.

* stochastic component (diffusion speed), deterministic component (interface between regimes).
Environment is determined by flow conditions (simulated flow field):

* can be determined in advance (flow jets produce laminar to turbulent regimes).

* represents environmental constraints (e.g. physical boundaries.)
Environment is determined by flow conditions (simulated flow field):

* can be determined in advance (flow jets produce laminar to turbulent regimes).

* represents environmental constrains (e.g. physical boundaries).

Initial condition: environment is seeded with particles (automata), all clustered in same location:

* one seed per population (can simulate multiple populations).
Environment is determined by flow conditions (simulated flow field):

* can be determined in advance (flow jets produce laminar to turbulent regimes).

* represents environmental constrains (e.g. physical boundaries.

Initial condition: environment is seeded with particles (automata), all clustered in same location:

* one seed per population (can simulate multiple populations).

Over time (integrated temporal divergence), divergence and co-location of particles leads to “structure” formation:

* structures are composed of particles that survive time evolution (conditional features favor certain conditions to emerge).
2-D Cultural Landscape

2-dimensional flow field:

* all dots begin in center of field, diffuse w.r.t. time.

* each dot in figure represent singular automata.

* vortices, ridges, and clusters predicted.

* aggregation due to common soft classification scheme (based on kernel values).
Examples of Contextual Structures

1) 2-tuple without contextual anchor.

| Light | Dark |
Examples of Contextual Structures

1) 2-tuple without contextual anchor.

2) 5-tuple with contextual anchor.
Examples of Contextual Structures

1) 2-tuple without contextual anchor.

2) 5-tuple with contextual anchor.

3) 3-tuple with contextual anchor.
Examples of Contextual Structures

1) 2-tuple without contextual anchor.

2) 5-tuple with contextual anchor.

3) 3-tuple with contextual anchor.

4) 3-tuple with contextual anchor.
Examples of Contextual Structures

1) 2-tuple without contextual anchor.

2) 5-tuple with contextual anchor.

3) 3-tuple with contextual anchor.

4) 3-tuple with contextual anchor.

5) 1-tuple with contextual anchor.
Missing Component of Neural Modeling

Existing models of what the brain does:

1) pattern and category recognition (connectionism).

2) intelligence as prediction (HTM Models).

3) emergent representations (development, evolution)

This approach:
Differencing and integration functions related to symbolic behavior (an emergent approach?).

* event-based selective inhibition in memory, attentional circuitry.

* multisensory integration (superadditive) in superior colliculus.
Supplementary Information for Paper

Fluid Models of Evolutionary Dynamics
http://syntheticdaisies.blogspot.com/p/fluid-models-of-evolutionary-dynamics.html

Interesting Workshop Session!!