Phylogenetics on CUDA (Parallel) Architectures
Bradly Alicea
http://www.msu.edu/~aliceabr
Phylogenetics Introduction

Q: How do we understand evolutionary relationships (e.g. common ancestry, descent with modification)?

use a directed, acyclic graph (from root to last common ancestor to descendents).
Why Phylogenetics?

The study of evolution is subject to incomplete/non-uniform sampling:

Fossil record

Properties of traits

Diversity

Answer: inferential tools and data fusion (consensus between different types of data).

Phylogeny is the hypothetical relationship between closely-related species.

Common ancestor A, how did B and C diverge (black box)?

Potential answer: trace changes one at a time (one possible set of changes).
Computational Complexity

Sampling of taxa (e.g. species, columns in M_{ij}) + characters (e.g. DNA sequences, rows in M_{ij}) = large # of tree topologies (combinatorics problem).

$$T = \frac{(2n - 5)!}{2^{n-3} (n - 3)!} \quad \text{for } n \geq 3$$

where $n - 1$ is # of taxa (rooted case).

4 taxa, $T = 15$
8 taxa, $T = 135135$
14 taxa, $T \approx 7.906 \times 10^{12}$

Unique perfect phylogeny (best evolutionary hypothesis) is NP-hard (for $M_{ij} \geq 10 - 11^2$), so we use heuristic techniques to approximate answer.

1) Maximum parsimony: nonparametric, best tree is one with least number of unique changes. Minimax method.

2) Maximum likelihood: parametric model estimated from data. Probability distribution for particular tree topologies.

<table>
<thead>
<tr>
<th>M_{ij}</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>ATA</td>
<td>ATA</td>
<td>ATA</td>
<td>ATC</td>
<td>ATC</td>
</tr>
<tr>
<td>C_2</td>
<td>TTG</td>
<td>TTC</td>
<td>TTG</td>
<td>TTG</td>
<td>TTT</td>
</tr>
<tr>
<td>C_3</td>
<td>TAG</td>
<td>TAG</td>
<td>TAG</td>
<td>TAG</td>
<td>TAG</td>
</tr>
<tr>
<td>C_4</td>
<td>CAC</td>
<td>CAC</td>
<td>CAA</td>
<td>CAA</td>
<td>CAA</td>
</tr>
<tr>
<td>C_5</td>
<td>AAG</td>
<td>AAG</td>
<td>AAA</td>
<td>AAA</td>
<td>AAC</td>
</tr>
</tbody>
</table>
Four-taxon problem: toy problem for comparing parsimony and likelihood methods.

1. What methods recover the true tree most often?

Maximum Parsimony: gradient descent, lowest scores win (generates “best” trees).

Maximum Likelihood: search space pruned using dynamic programming, generates series of “best” subtrees.

2. What methods are better at exception-handling?

1) Long-branch attraction: when two branches are reported to have same common ancestor but should be phylogenetically distant.

2) Polytomy: when many branches occur at the same time (rapid speciation, lack of resolution).

1. What methods recover the true tree most often?

Maximum Parsimony: gradient descent, lowest scores win (generates “best” trees).

Maximum Likelihood: search space pruned using dynamic programming, generates series of “best” subtrees.

2. What methods are better at exception-handling?

1) Long-branch attraction: when two branches are reported to have same common ancestor but should be phylogenetically distant.

2) Polytomy: when many branches occur at the same time (rapid speciation, lack of resolution).
Example #1

Suchard and Rambaut, Many-core algorithms for statistical phylogenetics. Bioinformatics, 25(11), 1370-1376.

Bayesian model (e.g. Maximum Likelihood):
* 62 mitochondrial genomes, carnivores (60 state codon model).

* 90-fold increase over CPU models.

Nucleotide-based model: each base (A, C, G, T) serves as a character.
* 4 possible states per character, total # characters = total # of nucleotide positions sampled (n).

Codon-based model: each combination of three nucleotides (e.g. ACT, TCT, GAG) serves as a character.
* 64 possible states (4^3) per character, total # characters = n / 3.
Model and Approach to Likelihood

\[F_u = \{ F_{urcs} \} \rightarrow \text{matrix of size } R \times C \times S \]

* element \(F_{us} \) = probability that node \(u \) is in state \(s \).

Travel upward through tree, compute forward likelihoods for each internal node \(u \).

When data are unambigious, algorithm runs in \(O(RCS^2) \) time.

Algorithm 1: GPU-based parallel computation of partial-likelihoods

1. Define COLUMN_BLOCK_SIZE (CBS) \(\leftarrow \) number of columns processed per thread block
2. Define STATE_BLOCK_SIZE (SBS) \(\leftarrow \) number of states processed per inner-loop
3. for all thread blocks (rate class \(r = 1, \ldots, R \) and column-block \(c = 1, \ldots, [C/CBS] \) in parallel do
4. using each thread \(t = 1, \ldots, S \) in SBS block, prefetch child partial likelihoods \(F_{urcs} \) for CBS columns (reused by all threads in block)
5. Initialize \(F_{urcs}^{(1)} \leftarrow 0 \) and \(F_{urcs}^{(2)} \leftarrow 0 \)
6. for \(j = 1 \) to S in SBS increments do
7. Pre-fetch transition probabilities \(P_{ij}(r)(t_b) \) for SBS states (reused by all threads in block)
8. \(F_{urcs}^{(1)} \leftarrow F_{urcs}^{(1)} \times P_{ij}(r)(t_b) \)
9. \(F_{urcs}^{(2)} \leftarrow F_{urcs}^{(2)} \times P_{ij}(r)(t_b) \)
10. end for
11. end for
12. Return \(F_{urcs}^{(1)} \times F_{urcs}^{(2)} \)
Many-core Implementation

Many-core implementation:
* for each node u recursively (every u, c, s) – distribute so that each $(r; c, s)$ entry executes its own thread.

* for each $(r; c, s)$, small portion of code dedicated to computing F_{ures}.

* previous approach to parallelization: partition columns into conditionally-independent blocks, distribute blocks across separate cores.

Four vectors calculated:
1-2) Reading forward likelihoods of child nodes $\{F_{\phi(bn)rej}\}$.

3-4) Finite-time transition probability matrices $\{P_{sj}(t|t_{bn})\}$.

GPU coalesces memory read/writes of 16 consecutive threads into single transaction.

Zero-padding used to deal with stop codons, other zero-probability states.
CPU vs. GPU

MCMC (Markov Chain Monte Carlo)-based resampling techniques implemented in single (32-bit) and double (64-bit) precision.

* in both cases, large speedup vs. CPU.

Important scaling dimensions:

1) state-space size (S). For nucleotides (S= 4), speedup using GPU becomes more modest.

2) alignment columns (C) – very small, large C values show limited benefit on GPU.

3) number of taxa (N) – performance saturates on GPU for larger values.
Reconstructed Tree, GPU

Tree reconstructions form “clades”, or sets of related taxa.

Clade membership = statistical support:
* maximum parsimony: bootstrap values.
* maximum likelihood: posterior probabilities.

Outgroup: helps to order the tree topology (distantly-related species).

Molecular clock: hypothesized rate of change for specific gene (can be a constant).
Example #2

Implemented MrBayes, a commonly-used program for phylogenomics, on multi-core CPU and GPGPU.

* fine-grained parallelism = very small threads.

* compute phylogenetic likelihood function (PLF) on known phylogeny, ultimate goal is benchmarking rather than reconstruction.

* can GPU improve inferential power of ML model?

Goal is to speed-up computation of the PLF in parallel, so that in application search time among a large amount of potential tree topologies can be minimized.
Rooting/Likelihood Construction

MrBayes (Bayesian inference), Maximum Likelihood.

Phylogenetic Likelihood Functions (PLF) require substitution, conditional probability information.

* estimate branch lengths and parameters of nucleotide substitution model (matrix Q, Figure 2).

* three main functions: CondLikeDown, CondLikeRoot, CondLikeScaler.

PLF = independent for loops, load depends on sequence length (m) and number of discrete rates (r).

* Down, Root - multiply likelihood vector elements by substitution matrix for each discrete rate (16 inner products required). Scaler - properly scale computation.
Partitioning Data for GPU

Phylogenomic data example: 1500 genes, ML analysis = 2+E06.

Efficient use of the GPU:
Number of threads must be maximized using one of two approaches:

1) direct parallelization (use group of threads in parallel, requires large number of synchronization points and conditional statements).

2) parallelize work at the likelihood vector entry level.

* calculation of each vector entry assigned to independent threads (avoid overhead).

Second approach: less concurrency and completely independent threads.
Final Issue: Scalability

Scalability: input data characterized by leaves (taxa) and columns (characters):
* leaves (number of calls to the PLF), columns (size of data computed in loops).

* multi-core CPU architectures: efficiency of fine-grained parallelism depends on number of cores sharing resources (intra-chip, cross-core communication).

* GPU: speedup as dataset increases (up to 20-50K columns). Speedup increases with computational intensity (GPU optimized for executing small parallel threads). GPU benefit realized when computation-to-data ratio is high.

GPU vs. CPU: neither method is uniformly superior:
* largest overhead for GPU: transfer of data (overall, need for better data sharing and more efficient communication mechanisms).

* parallelization time (programming) for MrBayes: 1/2 day for multi-core CPU vs. 2 days on GPU. CPU wins on this count.

* both multi-core CPU and GPU reduce amount of time consumed in the execution of the PLF. For baseline, 90%. Multi-core CPU = 10-15% vs. GPU = 5-10%. GPU wins on this count.