GEO 428: Aspect and Curvature
October 4, 2012

Due Dates

Aspect – Utility
Aspect = direction of steepest slope
Key factor in solar insolation
Driver for many biophysical processes
Evapotranspiration, temp, energy rates
Applications
Site suitability: agriculture, solar power
Visibility analysis
Habitat modeling

Aspect on a Surface
Recall the formal definition of slope:
\[S = \arctan \sqrt{p^2 + q^2} \]
where p is the west-east gradient
\[p = f_x = \frac{\partial f}{\partial x} \]
And q is the north-south gradient
\[q = f_y = \frac{\partial f}{\partial y} \]
Aspect is:
\[A = 180^\circ - \arctan \left(\frac{q}{p} \right) + 90^\circ \left(\frac{p}{|p|} \right) \]

Measuring Aspect
In degrees, typically clockwise from north
Values range from 0 – 360
0 = 360 = North!
Typically code flat areas as -1
Ex: Aspect = 90 degrees
Maximum slope faces 90 degrees
East facing terrain

Aspect Data Type
Circular, continuous scale
Compare to other Data Types
Nominal, Ordinal, Interval, Ratio
Does the Identity relation hold?
Is 30 = 30?
Do ordinal relations hold?
Is 180 > 30 > 20?
Can you add aspects meaningfully?
270 + 180 = 460?
Are ratios meaningful?
Is 180 degrees twice 90 degrees?
What's wrong with gray-shading 0-255 for aspect degrees 0-360?
Rescaling Aspect
Rescaling aspect for continuous 'circular' shading
Shade = |Aspect – 180|

- Asp = 5 or 355: shade = 175
- Asp = 160 or 200: shade = 20

DEM Example
In Grid, a raster called cach_asp
nice_aspect = ABS(180 – cach_asp)

GRASS Examples
Using existing GRASS aspect color ramps

Hillshading
Cartographic tool for displaying terrain
Also used for modeling reflectance

- Remote sensing applications
- Digital replacement for Shaded Relief Maps, Plaster Models, etc.
- Employs slope and aspect to calculate reflectance

- Relative to light source

Hillshading Concept
Shine a light on the landscape

- Azimuth (degrees from north)
- Altitude (height above horizon)
Identify angle at which light strikes the surface

- Surface perpendicular to light source = bright
- Surface parallel to light source = dark

Hillshading and Angles
Reflectance from a light source
Compare Terrain Angle – Sun Angle
Which will be brightest?

Reflection
Angles perpendicular are brightest
Angles parallel are darkest

Shadows
Light may not strike parts of surface

Sun Angle Important
Hillshade depends on lighting position

- Azimuth and altitude
Examples (Azimuth 315 deg.)

Examples (Altitude 45 deg.)

Caveats
Actual reflectance function of landcover, soil properties
May not account for shadows
'Inversion' can be a problem
 Visual system assumes light from above
 Shading with Southern azimuths = 'below'
 Our brains invert the intended image

Inversion
Harlan, KY: 180 degree Azimuth

Curvature
2nd derivative of terrain
 How is slope changing across landscape?
Profile
 Rate of change in vertical
 Slope increasing, decreasing
Plan
 Rate of change horizontally
 Slope converging, diverging

An 'Ideal' Slope

Applications
Critical for evaluating surface flow
Erosion / landslide risk
Soil Moisture, Organic content, Depth
Anything associated with those factors

Calculating Curvature
4th order polynomial function fit to 3x3 neighborhood
8 output parameters
Combination of these used to calculate:
 Slope (not the same as Horn!)
 Aspect
 Plan Curvature
 Profile Curvature
Examples (Harlan, KY)

Curvature in the Landscape
Which color lines are profile?
 - Increasing slopes?
 - Decreasing slopes?
Which are plan?
 - Divergent?
 - Convergent?
Concave?
Convex?

Impact of Curvature
Where is erosion occurring?
Where is deposition occurring?
Dampest soils?
Driest soils?

Curvature ID & Impact II

Summary
Measuring Aspect
 - Visualizing aspect
Hillshading
Curvature
 - Profile
 - Plan
Applications