GMM Efficiency and IPW Estimation for Nonsmooth Functions *

Otávio Bartalotti†
Michigan State University
December, 2010

Abstract

In a GMM setting this paper analyzes the problem in which we have two sets of moment conditions, where two sets of parameters enter into one set of moment conditions, while only one set of parameters enters into the other, extending Prokhorov and Schmidt’s (2009) redundancy results to nonsmooth objective functions, and obtains relatively efficient estimates of interesting parameters in the presence of nuisance parameters. One-step GMM estimation for both set of parameters is asymptotically more efficient than two-step procedures. These results are applied to Wooldridge’s (2007) inverse probability weighted estimator (IPW), generalizing the framework to deal with missing data in this context. Two-step estimation of β_o is more efficient than using known probabilities of selection, but this is dominated by one-step joint estimation. Examples for missing data quantile regression and instrumental variable quantile regression are provided.

*JEL: C13; Keywords: Generalized method of moments, Nonsmooth objective functions, Inverse Probability Weighting, Missing data, Quantile regression.
†Department of Economics, Michigan State University. E-mail: bartalot@msu.edu. Website: https://www.msu.edu/~bartalot/ . Address: Old Botany Hall, Suite 206, East Lansing, MI, USA, 48824.