Prospects and Limits of Regulating Network Utilities
Lessons from complex adaptive systems theory

Johannes M. Bauer
Enarson Lecture
Ohio State University
Columbus, OH, May 21, 2004

Overview
• Background and basic approach
• Co-evolution of technology and policy
• Conditions of ICT governance
• Implications for regulatory policy
• Insights from the complexity approach

Background
• Seeming mismatch between (U.S.) policy efforts and outcomes
 – Glacial emergence of local competition
 – Renewed increase in market concentration
 – Unexpected effects of ICT unbundling
 – Collapse of ICT stocks and investment climate
 – Losses of jobs and global leadership in ICT
 – CA electricity deregulation
• Policy failure? Theory failure?

Effective governance
• To be effective, governance needs to be sufficient to achieve/prevent an outcome
• Classical model of policy-making:
 \[W = W(x) \quad \text{...... social objective function} \]
 \[x = f(a, z) \quad \text{...... policy model} \]
• Find policy variables \(a^* \) that maximize
 \[W^* = W^*(x^*) \]
• Assumes omniscient, benevolent and omnipotent policy maker

Possible limits
• Instrument seems to work but has unnoticed and unintended effects
• Governance has short term effects but is irrelevant in the medium and long term
• Policy instrument does not achieve the intended effect at all
• No policy instrument is known
• No agreement can be reached
• Constraint is not obeyed and/or is not enforceable
Co-evolution of technology, sector economics, and policy to a complex adaptive system (CAS)

Past: “closed” networks

Present: network of networks

Future: “open” network

Complex adaptive system

• Important features of CAS
 – Many decentralized decision makers (agents)
 – Localized (but limited global) knowledge
 – Agents learn and adapt to changing environs
 – Interrelations and between agents (loosely coupled tightly coupled systems)
 – Feedback, non-linear behavior and unpredictability
• “Complexity” is a matter of degree (order, edge-of chaos, chaos)
• ICT is increasingly complex

ICT governance in conditions of high complexity
Information constraints

• Asymmetric information
 – Incentive compatible design of regulation
 – Efficient regulatory design is complicated
• Ability of planner to improve efficiency
 – Problem of decentralized information
 – Policy neutrality (rational expectations)
• Fundamental limits to knowledge
 – Persistence of false “mental models” (Nelson)
 – “Remediability” criterion (Williamson)

Institutional constraints

• Recognition that institutions matter
 – Organizations (Greif)
 – Rules of the game (North)
 – Outcomes of repeated games (Aoki)
• Institutions are part designed (for which meta-rules exist) and part emergent
• Legal and economic feasibility constraints
• Political feasibility constraints (number of “veto players,” transaction cost)

System constraints

• Arise from three sources
 – Simultaneity of political, economic, legal and other constraints
 – Factors not controllable by policy
 – Complexity of ICT infrastructure
• Difficulty of finding sustainable and effective policy instruments
 – Can “leverage points” be found?
 – Can “superior process” be found?
 – Problems of feedback and indirect effects

Implications for regulatory policy

Governance reconsidered

• Constraints reduce degrees of freedom of policy (but do not render it fully ineffective)
 – Sector design (“order”) critical
 • Markets and competition compatible with various sets of rights and obligations
 • Competing institutional frameworks (e.g., spectrum property + commons) would facilitate learning
 – Most effective discretionary policy instruments are available at the micro level
• Aggregate performance emerges from but is not fully determined by micro-level

Feasible policy instruments
Competition & BB penetration

![Chart showing competition and broadband penetration](source: Bauer 2003)

Possible policy instruments

<table>
<thead>
<tr>
<th>Factor</th>
<th>Sufficient</th>
<th>Necessary</th>
<th>Neither</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic growth</td>
<td>Fiscal policy</td>
<td>ICT open entry</td>
<td>ICT open entry</td>
</tr>
<tr>
<td>Innovation rate</td>
<td>R&D subsidies</td>
<td>ICT open entry</td>
<td>ICT open entry</td>
</tr>
<tr>
<td>ICT use</td>
<td>Public projects</td>
<td>ICT open entry</td>
<td>ICT open entry</td>
</tr>
<tr>
<td>ICT price level</td>
<td>Price regulation</td>
<td>ICT open entry</td>
<td>ICT open entry</td>
</tr>
<tr>
<td>Universal service</td>
<td>Public investment</td>
<td>Open entry</td>
<td>Subsidies</td>
</tr>
<tr>
<td>Broadband access</td>
<td>Public investment</td>
<td>Open entry</td>
<td>Open entry</td>
</tr>
<tr>
<td>Consumer protection</td>
<td>Condition regulation</td>
<td>Consumer laws</td>
<td>Open entry</td>
</tr>
<tr>
<td>Competitive behavior</td>
<td>Public ownership</td>
<td>Open entry</td>
<td>Antitrust</td>
</tr>
<tr>
<td>Copyright</td>
<td>Compulsory license</td>
<td>IP laws</td>
<td>DRM standards</td>
</tr>
<tr>
<td>Network access</td>
<td>Interconnection, unbundling</td>
<td>Enabling laws and regulations</td>
<td>Open entry</td>
</tr>
<tr>
<td>Wholesale prices</td>
<td>Price regulation</td>
<td>Enabling laws and regulations</td>
<td>Open entry</td>
</tr>
</tbody>
</table>

Indirect control and emergence

![Diagram showing indirect control and emergence](source: Bauer 2003)

Indirect control ...

![Diagram showing indirect control](source: Bauer 2003)

Unbundling and BB diffusion

![Chart showing unbundling and broadband diffusion](source: Bauer 2003)

Disruptive technologies

- Emerging disruptive technologies
 - Unlicensed wireless (WiFi, UWB, mesh)
 - Voice over Internet Protocol
 - P2P file sharing technologies
- Complex system perspective
 - Examine direct and indirect effects
 - Unfettered market entry can be destabilizing (push infrastructure into the “chaotic” zone)
 - What degree of inertia optimizes benefits?
Institutions and performance

- Substantial evidence that new ICP regime is more efficient than monopoly framework
- Complex rather than simple causation
 - New orthodoxy works “on average”
 - Different “constellations” of institutions work (regions may periodically “luck out”)
 - Conditions for successful reform easiest to specify if gross inefficiencies exist
- Some degree of institutional diversity is desirable as it facilitates social learning

Conclusions

- Complexity approach provides new perspective to understand ICT and regulatory policy design
- Does not offer a prescriptive framework
- Emphasizes importance (and indeterminacy) of overall sector design and therefore desirability of institutional experimentation
- Results in a more humble view of the possibility of discretionary policy (government as a “player”)
- Emergent nature of aggregate level effects
- Advantages of adaptive policy over grand designs

Conclusions ...

- Questions whether more competition and easier market entry is always desirable
- Urges use of new methods to assess effects of regulation (computational, experimental tools)
- Policy may be able to harness features of the system complexity
 - Competition, sustained by antitrust
 - Facilitation of networks and technology diffusion (scale free nature of networks, power law distribution)
- Governance matters but in different and more complicated ways than commonly perceived

References