Chapter highlights: Addiction (Ch 11)

The purpose of “chapter highlights” is to offer a framework in which to think about the specific information discussed in each *Brain Facts* chapter. These highlights draw upon information in the chapter and on the new Brain Facts web site (http://www.brainfacts.org) and occasionally, on our own knowledge of neuroscience that may not be discussed in *Brain Facts*. Questions for Brain Bee will come from *Brain Facts* (new 2012 publication) and entries from the new Brain Facts web site that have “brainfacts.org” in the URL. Some but not all relevant entries are cited below.

Drug addiction is a pathological desire for drugs, despite many adverse consequences. Drugs of abuse typically activate the *brain reward system* and also change a person’s brain circuits, making them more susceptible to addiction.

For more information about brain circuits involved in addiction, go to: http://www.brainfacts.org/diseases-disorders/addiction/articles/2011/addiction-and-brain-circuits/

- The brain regions that are changed by drugs are involved in *executive function* and *judgment*.
- These changes are short-term AND long-term.
- **Tolerance** and physiological **dependence** do not mean addiction, but are associated with addiction.
- To learn more about the dangerous cycle of drug addiction, and how genes and environment are involved, go to: http://www.brainfacts.org/diseases-disorders/addiction/articles/2010/reward-and-punishment/

How do drugs of abuse work in the brain?

Nicotine is the addicting substance in tobacco

- Acts through *acetylcholine nicotinic receptors*
 - Stimulates the adrenal glands, causing release of *epinephrine*
 - Stimulates the release of *dopamine* in reward areas of the brain

Alcohol contains the active ingredient *ethanol*

- Activates **gamma-aminobutyric acid (GABA)** receptors. GABA is an *inhibitory* neurotransmitter, so it makes sense that activation of GABA receptors can calm anxiety, delay reaction time, and impair muscle control
- Decreases **N-methyl-d-aspartate (NMDA)** receptor function

Marijuana contains the active ingredient **tetrahydrocannabinol (THC)**

- THC binds to *cannabinoid receptors*

Opiates (includes *heroin* and *morphine*)

- Activates **opioid receptors** by mimicking the body’s own, naturally occurring, opioid peptides
- Increase the release of *dopamine* in reward areas

Psychostimulants (includes *cocaine* and *amphetamine*)

- Block *dopamine transporter*, causing an accumulation of *dopamine* in synapses within the reward centers, such as the **nucleus accumbens**
Club drugs (includes ecstasy, GHB, roofies, and ketamine)

- MDMA (aka ecstasy) is a synthetic **amphetamine**, so it blocks the transporter on dopamine cells, increasing dopamine in the synapse
- Rohypnol (aka roofies), GHB, ketamine are **central nervous depressants**. In fact, a lot of researchers use ketamine as an anesthetic on research animals!

You may have noticed that most of these drugs cause an increase in dopamine within reward centers of the brain. For a short film (noir) about dopamine, told from the viewpoint of a dopamine-producing cell in the brain’s reward center, the ventral tegmental area, go to: http://www.brainfacts.org/diseases-disorders/addiction/articles/2011/dopamine-and-addiction/

Myths associated with addiction (for explanations of what really goes on, click on the following links!)

- Drinking alcoholic drinks always kills brain cells
- Drug use makes holes in your brain