Teaching related to scientific literacy needs to be consistent with the spirit and character of scientific inquiry and with scientific values. This suggests such approaches as starting with questions about phenomena rather than with answers to be learned; engaging students actively in the use of hypotheses, the collection and use of evidence, and the design of investigations and processes; and placing a premium on students’ curiosity and creativity.

-- The American Association for the Advancement of Science (AAAS)

Course Overview

Welcome to 402 and to continuing your next step in your career as a teacher. I hope this coarse will help you become an effective, enthusiastic, and adventurous teacher. This course builds on your previous work and experiences from thinking like a teaching to knowing like a teacher.

This course is designed to address three basic goals. First, we will focus on learning some science together by engaging in some scientific inquiry just as you might do with your students. Second, we’ll focus on the methods of teaching science by learning more about what science is, how children learn science, what we need to teach in science (standards), and how we want to teach science. Part of deciding how to teach science will include studying different models of science teaching, and learning how to: establish a community of learners, assess science learning, use technology successfully, address diverse learner needs, and build lesson plans for science units. Finally, you will work in the field as a pre-teacher. Part of your experience will include assessing students’ understanding of science and developing and teaching a mini science unit (a series of 3 lessons plus an assessment) in the classroom.

If you are approaching this course with mixed feelings, you are not alone. Many new teachers are both apprehensive and eager to learn more science so that they may feel more competent as science teachers than they might have felt in their own schooling. Whatever your feelings, I hope this course can help you use them positively and productively for becoming a lifelong science learner, and for helping your students become lifelong science learners too.

This course is not designed to turn you into an expert science teacher, but a prospective teacher who has thought hard about some of the central questions in science teaching, who has thoughtful ideas about the answers to those questions, who has the skills, confidence and curiosity to learn from teaching and from the other opportunities for learning that lie ahead.

I expect this course to be a lot of work, but I also hope you will find it meaningful and rewarding.
General Expectations and Policies

Your thoughtful participation is essential to the success of the class and to your learning. The more energy you are willing to put into reading, writing, thinking, and discussing, the more we can all learn from one another, and the more valuable it will be for you individually. For each class meeting, you should complete any reading or writing assignments and be prepared to offer our thoughts about these in class. As a developing teacher, it will become increasingly important that you learn to share your ideas and thoughts with others—and including your students and your colleagues. A commitment to learning to teach and being a supportive colleague includes being punctual, being respectful and responsible in responding to other people’s talk and behavior, being cooperative in helping the group function well as a learning community, being open to new ideas and reserving judgment about other’s reasons and actions, and being willing to engage in lively and knowledgeable discussions about ideas and actions.

Points will be deducted from your final grade for distracting or disrespectful behaviors including:

- Not being adequately prepared for class
- Sleeping or doing other work or activities in class
- Talking to classmates during class discussions or presentations
- Laughing or ridiculing someone else’s comments or ideas
- Using crude or abusive language
- Being late to class

Attendance

As you know, being a teacher demands high standards. Dependability and punctuality are critical qualities in the profession. Therefore, your regular attendance and punctuality are important to your participation in the class and the field. You are allowed one excused absence from the science segment of TE-402 (including class sessions or field experiences) for illness or personal emergencies without a grade penalty. Additional absences will result in the deduction of points from your grade. More than two absences are serious cause for concern and will necessitate a conferences with the Team 1 staff and may result in a failing grade for the course.

Communication and Professional Responsibilities

If you need to be absent from class or the field placement, you are expected to notify me in advance. If your absence is an emergency and you cannot contact me in advance, contact me as soon as possible. You should make arrangements with a classmate to gather handouts and take notes for you. If you miss a class, you are responsible for catching up on any missed material and assignments. This will entail handing in any missing work, finding out from another classmate what we did in class, and making up the work conducted in class by completing an appropriate replacement assignment to be determined by the instructor.

In the schools, you are expected to dress, act, and talk in professional ways. (Short skirts, baseball hats, and casual clothes are not appropriate.) You are also expected to be respectful of children and school staff and be mindful of their need for learning and teaching to go on without unnecessary interruption. The confidentiality of the children and their families should be maintained at all times.

If you have concerns or confusions about the course content or expectations, please make an appointment to discuss these with me. I would happy to talk with you and try to work things out. You may request assistance with such a conversation from either Judy O’Brien (353-9135, jlobrien@msu.edu) or Helen Featherstone (432-1532, feather1@msu.edu).
Intellectual Honesty

In the context of the academia, intellectuals share and help shape each other’s ideas, and in doing so, they recognize each other’s contributions and give each other credit and recognition. Work that is not your own needs to be properly cited, whether the source is a classmate, a website, or a published text. Taking credit for work you did not produce is considered plagiarism, which is a serious offense with serious consequences. It is also intellectually dishonest to write a response to a book, chapter, or article you did not read or to take credit for a lesson you did not plan. Work that is found to be intellectually dishonest will receive a failing grade; submitting such work may constitute grounds for failing the course (see your student handbook and MSU policies for students’ rights and responsibilities).

Late Assignments

Conflicts with an assignment deadline should be discussed and resolved before the assignment’s due date. Unexplained late assignments may not be accepted and may result in a failing grade for that assignment. If you are absent on the day an assignment is due and do not make other arrangements to get the assignment to me, it will be considered late. Please note that I am stringent on receiving reflective journals on time (due to the nature of their assignments, your ability to participate in class, and my ability to keep track and grade in an appropriate manner.) I am much more willing to accommodate due dates for the remaining assignments. Further, I am willing to provide feedback and enable revisions for the large assignments.

Technology Requirement

In order to be certified by the state of Michigan, you must be able to demonstrate that you can utilize computer technology both as a teacher and in your teaching. In this class, we will explore and evaluate, and hopefully use some educational software with children in science lessons. As part of this experience, you will be required to write a review of some piece of educational software. By doing so, you will automatically pass the technology level 1 requirement for educational software, and most of you will pass a level 2 requirement for educational software by incorporating the use of a piece of educational software as an essential component of your curriculum project or your constructing benchmarks and technology lesson plans.

Writing

Teachers are models and coaches of writing for their students. Teachers must be able to communicate effectively both in speaking and in writing with colleagues, parents and others. For those reasons, teacher candidates are expected to write effectively and conventionally. TE402 is a Tier II writing course. If a paper is returned to you for revision, you must revise, complete and return the piece within two weeks. For students who experience difficulty in meeting writing expectations, seek help! You can get help from you instructors, other teacher candidates, or by seeking help at the Writing Center, 300 Bessey Hall: 432-3610. Grammar Hotline: 432-1370.

Assignments

These brief descriptions will give you some idea of the major assignments. As the semester progresses, I will distribute fuller guidelines for each.

Reflective Journal
Your reflective journal will include:
 (1) Responses to questions about the readings and other thoughts your might have about them.
Brief reflections about our class OR classroom observations at the school (You should alternate between the two of these every week).

Possibly other information such as a data from our science inquiries (I will let you know about this).

Please type these reflections on paper that will be handed in at the beginning of class.

Reflections should show evidence that you have read and thought about the main ideas presented in the readings and the science teaching in field. Also, keep in mind that this journal should incorporate reflections, not descriptions of what the readings stated or of what happened in field or class. There will be roughly 8 reflection journals throughout the semester, and they should be about 2-3.5 pages in length. Most (but not all) of the weekly writings will be graded. At some point in the semester, you may be asked to comment on someone else's reflective journal instead of writing your own, or vice versa. Directions related to the reflective journal will be further clarified in class.

Revision and Microteaching of Small Science Activity
This assignment gives you an opportunity to revise and teach a small science activity to peers in class. Ideally, use a lesson plan that you already created in SME301 (or pick one that you like from a variety of sources including resources from Dr. Schwarz), and revise it according to our criteria in class. Then, teach this activity to a small group of TE402 peers for roughly 20 minutes and get their feedback on the lesson. You will hand in the original and revised lesson plan to Dr. Schwarz with a paragraph reflection about the lesson. This assignment will be conducted in class February 21 & 28th.

Student Pre-Assessment and Analysis
In order to understand how students learn science and how best to teach concepts, practices, and habits of mind to a variety of learners, it is important to conduct some sort of pre-assessment of student learning such as an interview with a K-5 student, a small discussion/interview among a few students about what they may already understand or know how to do related to the science topic, or a well-designed learning activity that you can give and observe with one or two students relating to the subject matter. During any of these assessments, you should plan to audiotape the interaction, transcribe it, and write an analysis of what you learned from the student(s). You will need a cassette recorder for the interview. If you don't have one, you will need to make arrangements to borrow one. This assignment should be conducted sometime during the week of March 14, and will be due March 21. Further details about this assignment will follow.

Constructing/Reflecting Benchmarks & Technology Lesson Plans
This will be a smaller-sized project conducted during class time and for homework during the final three weeks of class in which you will find or generate two future lesson plans that address specific constructing/reflecting science benchmarks and incorporate computer software (thus addressing the technology requirement). You can build off your microteaching lessons, or build off of other curriculum materials in print. This assignment will be due when we meet during finals week, May 4th. Again, further details will follow.

Curriculum Project
This will be the culminating assignment that pulls together what we have learned in class, and what we have taught in the field. It will be the beginning of a unit (a mini-unit) about a science topic you can use for your future as a teacher. It should include three lessons (revised from the ones you taught in the school), assessments, reflections, how you can integrate this science unit across other disciplines (such as social studies and math), how the lessons address all learners, how they incorporate technology or educational software, and how the lessons help to foster a community of learners, among other aspects. You will be teaching this unit during the weeks of April 11th and 18th, and your final write up will be due the last week of class, April 25, 2004. Further details about this assignment will follow.
Summary of Assignments and Points

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Reflection Journals</td>
<td>20</td>
</tr>
<tr>
<td>Small Microteaching Science Activity</td>
<td>10</td>
</tr>
<tr>
<td>Student Pre-assessment and Analysis</td>
<td>10</td>
</tr>
<tr>
<td>Curriculum Project</td>
<td>25</td>
</tr>
<tr>
<td>Constructing/Reflecting Benchmarks and Technology Lesson Plans</td>
<td>15</td>
</tr>
<tr>
<td>Class Attendance and Participation</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Points 100

General Grading Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>4 Point Scale</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-100</td>
<td>4.0</td>
<td>This represents outstanding and exemplary work. The student uses and integrates readings, classroom discussions, and field experiences (where appropriate) to inform his/her writing. The student meets all the requirements of the assignment, is deeply thoughtful, and provides many details and examples to support writing. The writing contains no errors in grammar, punctuation, and spelling.</td>
</tr>
<tr>
<td>90-94</td>
<td>3.5</td>
<td>This represents high quality work. The student uses many readings, classroom discussions, and field experiences (where appropriate) to inform the writing. Meets all the requirements of the assignment, is thoughtful and provides some details and examples to support writing. The writing contains very few errors in grammar, punctuation, and spelling.</td>
</tr>
<tr>
<td>85-89</td>
<td>3.0</td>
<td>This represents good quality work, performing at expected level for senior year. The student uses some readings, classroom discussions, and field experiences to inform writing. Meets all requirements of assignment, shows attempt to engage with the purposes of the assignment, provides details and examples to support writing. The writing contains few errors in grammar, spelling, and punctuation.</td>
</tr>
<tr>
<td>80-84</td>
<td>2.5</td>
<td>This represents work below expected level of quality for the TE program. The student does not include appropriate references to relevant readings, class discussions, and field experiences to inform writing. The student does not meet all requirements of assignment. The student’s writing represents a limited attempt to engage with the purposes of the assignment, few details and examples to support writing. The writing includes many errors in grammar, spelling, and punctuation.</td>
</tr>
<tr>
<td>75-79</td>
<td>2.0</td>
<td>This represents work significantly below expected level of quality. The student’s writing includes many errors in grammar, spelling and punctuation. The work shows little evidence of having read course readings, of uses of classroom discussions or of field experiences. The writing meets few of the assignment’s requirements. The student demonstrated a shallow attempt to engage with the purposes of the assignment, no details or examples to support the writing.</td>
</tr>
</tbody>
</table>
Grading Scale

<table>
<thead>
<tr>
<th>Points</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-100</td>
<td>4.0</td>
</tr>
<tr>
<td>90-94</td>
<td>3.5</td>
</tr>
<tr>
<td>85-89</td>
<td>3.0</td>
</tr>
<tr>
<td>80-84</td>
<td>2.5</td>
</tr>
<tr>
<td>75-79</td>
<td>2.0</td>
</tr>
<tr>
<td>70-74</td>
<td>1.5</td>
</tr>
<tr>
<td>65-69</td>
<td>1.0</td>
</tr>
<tr>
<td>64 or below</td>
<td>failing</td>
</tr>
</tbody>
</table>

Although your final grade will be computed by totaling assignments from both segments of the course (science & social studies), you cannot pass the course unless you have completed all the assignments and have a passing grade in both segments and field components. Students who have a satisfactory grade in one segment but having been prevented by circumstance from completing the work for the other segment will get an incomplete which will be changed to a grade for the course when they complete the work for both segments.

Required Texts and Readings

1. Course readings to be purchased from the Copy Center in 515 Erickson. They are open M-F 8am-4:30pm. Their number is 353-8805. If you buy the CD with PDF's of the readings, it will cost approximately $3; if you want the readings printed out on paper, it will cost approximately $20. If we place your orders during our first class meeting, you can pick up your materials after class and be ready to go!

 *This book can be purchased or viewed on-line at (among other places)
 http://books.nap.edu/html/inquiry_addendum/*. It contains important information about teaching scientific inquiry to K-12 students including images of what inquiry teaching looks like, what are the important components of inquiry, and resources for teaching inquiry.

 This is a text written by a teacher/researcher and explores ideas about ‘science talk’ in science class, how to promote productive science discussions in class, and what to expect from such an approach. We won’t be reading the entire text, so you might want to purchase a used copy.

Highly Recommended Texts

 I highly recommend having a text like this in your teaching library. While somewhat expensive, this one includes the basic science content information you will need to know for teaching science and a number of good, fundamental science activities you can include in your lessons.

 This is an excellent text about classroom management techniques derived from interviews with and observations of four classroom teachers in different environments. It has extensive coverage and real classroom cases.
 This is a methods text with lots of great science activities for those of you who plan on teaching lower elementary grades. In particular, it has a great list of the 'big ideas' in science for younger children and some terrific ideas for how to integrate the science lessons with literature, arts, creative play, etc.

4. BSCS. Teacher’s How-To Handbook for teaching science.
 This is a good reference for really figuring How-To teach science. It’s specific to teaching the BSCS curriculum materials, but has some good pointers for how to address classroom management, assessment, and other such important topics.

5. National Science Education Standards
 The document from which many state standards were derived. Can be accessed from the web at http://www.nap.edu/books/0309053269/html/index.html and http://www.nap.edu/catalog/4962.html

6. Benchmarks for Scientific Literacy
 A great document from AAAS that is more readable than the National Science Standards. Can be accessed from the web at http://www.project2061.org/tools/benchol/bolframe.htm

Necessary or Just Plain Helpful Websites

http://ed-web3.educ.msu.edu/te/team1/default.html
 Team 1 information, including the student handbook (information about team 1 organization, requirements, portfolios, technology requirement, guidelines for unit plans, etc.), and other things such as criteria for progressing to the internship year, contact list, etc.

http://www.michigan.gov/mde/
 Michigan Department of Education where you can download the Curriculum Framework Science Benchmarks.

http://www.misd.net/MIBIG/default.htm
 MI BIG. These are the diagrammatic representation of the Michigan Science Standards and Benchmarks. They have less textual description than MEGOSE, but more diagrams (maps) showing how the benchmarks are interconnected between grades. If you buy the book form, it’ll run you about $35.

http://www.miclimb.net/

http://mscrn.educ.msu.edu/
http://35.8.170.4/sems.start.fcgi
 These are databases with lesson plans developed by students in Dr. Ed Smith’s course of elementary science methods, and of lessons that Prof. Smith has developed himself. They will be a useful reference for you as you work on your mini curriculum unit. Use the username: "guest" with password “guest.”
http://www.msta-mich.org/

The Michigan Science Teacher's Association. The state chapter with information about the yearly meeting and links to important sites you might want to know about.

http://www.nsta.org/

The site for the National Association for Research in Science Teaching. A great place to get resources for science education materials, conferences, etc.

The New York Science Times. A fabulous source of articles every Tuesday about the latest science (including health news). Check this out along with NPR's ‘Science Friday’ (2-4pm Friday's) to catch up on your science.

Tentative Calendar for TE 402 Spring 2005*

*Please note that the class schedule, assignments, and dates might be changed at any time during the semester to optimize the value of this class for the students. Changes will be mentioned during class or via email.

Week#1, January 10, 2004 Introduction; “What is our image of science?”

In Class
- Welcome! A fun science activity, and some introductions.
- Review syllabus and information about field placement.
- Pre-assessment/questionnaire followed by a KWHL for science teaching.
- Peer-interview “What is our image of science?”

Assignments Due For Next Class
- Take the “Light and Shadows” Scenario pre-assessment and write down your responses.
- Take the “Card Sort” pre-assessment and write down responses.
- Read “What is science? 1” “What is science? 2” “Why teach science?” and “Beliefs about science.” Also look at “Sample journals.”
- Reflective Journal. For this week, you will need to write up a paragraph on issues, concerns, or impressions about our first class. You will also need to write a thoughtful response to the readings (see handout for questions to address). You can study sample weekly writings or journals in your course readings as good examples.

In the Field
- Prepare to visit the field. Write an introductory letter about yourself to your CT and try to include a picture of yourself so that the teacher can learn your name. Tell them about why you want to teach, and a little bit about your teaching philosophy. Try to keep your letter to one page. This letter might eventually be a document you will want to revise to keep in your teaching portfolio.

Week#2, January 17, 2004 Dr. Martin Luther King Jr. Holiday- NO CLASS

In Class
- No Class. Do something to commemorate the life and dreams of Dr. King and reflect on where we stand on race as a society today. How is science and science education is related to race and equity?
Assignments Due For Next Class
 • Read ahead if possible.

In the Field
 • Starting January 18th, introduce yourself to your CT and students, and give them your introductory letter. Start classroom observations.
 • Take notes in your journal about your observations. What are your impressions of your classroom? How does your CT portray science?

Week#2, January 24, 2004 “What is science? Why should we teach it? What are our biases?”

In Class
 • Check in about field placement.
 • Discuss readings, “What is science? Why should we teach it? What are our biases?”
 • Conduct our scientific inquiry in science.

Assignments Due For Next Class
 • Read articles “How children learn” “National Standards” and “Michigan Standards”
 • Reflective journal should include class reflection (reflecting on field or our class) and a reading reflection (respond to reading reflection prompts).

In the Field
 • Continue to make classroom observations, and include some of these in your journal. What interesting things do you notice about the students? Classroom culture? Science lessons?
 • Participate by helping your CT.

Week#3, January 31, 2004 “How do children learn science? What science do we need to teach them?”

In Class
 • Discuss readings related to questions, “How do children learn science? What do we need to teach them? – The science education standards.”
 • Continue scientific inquiry.

Assignments Due For Next Class
 • Read “Models of teaching”, “Learning Communities” [This week and the next week will be pretty substantial readings that will take time and thought.]
 • Reflective journal.

In the Field
 • Continue to make classroom observations and participate.

Week#4, February 7, 2004 “How do we want to teach science? (Models of teaching: didactic, discovery, conceptual change, and communities of learners)”

In Class
 • Discuss readings related to question, “How should we teach science? Models of teaching.”
 • Continue science investigations.

Assignments Due For Next Class
 • Read articles on Inquiry including, “Inquiry at the window”, the National Standards Inquiry book pp. 24-27 (the 5 essential features of inquiry) and images of inquiry pp. 39 - 59, “5E’s”, “EIMA”, and “Inquiry Cycle” [Again, this is a heavy-duty week of reading. Things get easier after this.]
 • Think about the one science lesson that you want to revise and teach to a small group of peers starting in two weeks. Start thinking about how the readings are helping you re-think the science lesson.
 • Reflective journal.
In the Field
• Continue to make classroom observations and participate. Start talking with your CT about your teaching for the curriculum project assignment.

Week#5, February 14, 2004 “How should we teach science? (Models continued – guided inquiry)”

In Class
• Discuss readings related to question, “How should we teach science using scientific inquiry?”
 Developing a model and criteria of effective science instruction.
• Continue science investigations.

Assignments Due For Next Class
• Read Gallas book including the introduction, chapters 1, 2, and 6. Read “cooperative learning.”
• Reflective journal.
• Half the class should prepare their microteaching science activity for class next week. Address the ideas we’ve been discussing about effective science teaching. Bring your materials to teach 3 or 4 peers in class.

In the Field
• Continue to make classroom observations and participate.

Week#6, February 21, 2004 Establishing a community of learners (revisited), and cooperative learning groups

In Class
• Discuss readings related to science talks and cooperative learning. Continue discussing features and principles of effective science teaching.
• Continue science investigations.
• Half the class will microteach a science activity to 3 or 4 peers. Reflect and critique.

Assignments Due For Next Class
• Read either “assessment 1” or “assessment 2” and skim the other. Look over “Sample assessments.”
• Reflective journal.
• Other half of the class should prepare their microteaching science activity for class next week. Address the ideas we’ve been discussing about effective science teaching. Bring your materials to teach 3 or 4 peers in class.
• Prepare 1.5 – 2 page lesson plan write-up of microteaching science activity with reflection.

In the Field
• Continue to make classroom observations and participate.

Week#7, February 28, 2004 “How can we assess student science learning?”

In Class
• Discuss readings related to question, “How can we assess student science learning?”
• Continue science investigations related to inquiry activities.
• Other half of the class will microteach a science activity to 3 or 4 peers. Reflect and critique. Turn in lesson plan for microteaching activity.

Assignments Due For Next Class
• Read article on classroom management (read “management 4” and pick either “management 1” “management 2” OR “management 3.” Be prepared to share these ideas with your peers who have not read the same article). We will do a ‘jigsaw’ share for next time.
• Look over “Interview tips”, “sample interview”, and examples of students’ pre-conceptions “Student ideas about motion.” Prepare for conducting pre-assessment with students.

In the Field
• Continue to make classroom observations and participate. Prepare to assess students’ prior knowledge of the subject area you are going to teach the week after spring break.

March 7-11 MSU SPRING BREAK

Week#8, March 14, 2004 “How can we effectively manage our classrooms?”

In Class
• Discuss readings related to question, “How can we manage science lessons for learning?”
• Prepare for students’ pre-assessment.
• Science investigations.
• Mid-semester evaluation.

Assignments Due For Next Class
• Read “technology.”
• Reflective journal.
• Conduct and analyze students’ pre-assessment for your science topic.

In the Field
• March 15 or 17, assess students’ prior knowledge for your future curriculum project. Choose from among several methods of assessment including small group interview, one-on-one interview, activity with a student and prompts, etc.

Week#9, March 21, 2004 “How can we effectively incorporate technology into the classroom?”

In Class
• Turn in transcription and analysis of student(s) pre-assessment. Share results. Start thinking ahead about curriculum project.
• Discuss reading related to question, “can we effectively incorporate technology into the classroom?”
• Science investigations.

Assignments Due For Next Class
• Read “science for all” and “culture and gender differences”
• Reflective journal.

In the Field
• Continue to make classroom observations and participate.

Week#10, March 28, 2004 “How can we teach science for all children?”

In Class
• Discuss readings related to question, “How can we teach science for all children?”
• Work on curriculum project.

Assignments Due For Next Class
• Read Gallas Science Talks chapters 9 and 10 and skim chapter 8.

In the Field
• Continue to make classroom observations and participation.
Week#11, April 4, 2004 “Science Talks” wrap-up

In Class
• Book club discussion related to Science Talks.

Assignments Due For Next Class
• Read “Field trips” “Literacy” and “Science teaching in school.”

In the Field
• Continue to make classroom observations and participation.

In the Field
• Lansing School District Spring Break April 4-8.
• Teach your curriculum project on April 12th, 14th, and 19th.

Week#12, April 11, 2004 NO CLASS

Class will be cancelled due to my attendance of the American Educational Research Association conference.

Week#13, April 18, 2004

In Class
• Debrief teaching experience.
• Work on constructing benchmarks and technology lesson plans.
• Share thoughts on field trips, literacy, and science teaching in schools.
• Post-assessment.

Assignments Due For Next Class
• Finish your curriculum project revisions and prepare to turn it in. Include revisions that you would make based on students’ final assessments.

In the Field
• Continue to make classroom observations and participation.

Week#14, April 25, 2004 Constructing Benchmarks and Technology Lesson Plans; Final work and reflections

In Class
• Turn in your curriculum project
• Work on constructing benchmarks and technology lesson plans.
• Post-assessment and reflections.

Assignments Due For Next Class
• Finish your constructing benchmarks and technology lesson plans. If you found or created some great lessons, create a document to enable sharing these with others in the class.
• Prepare some visual aid about your curriculum project (such as a poster) that can be used to show other students what you did. Bring in samples of student work to share.
• Bring some food or drink for sharing during our finals week meeting.

In the Field
• Give your CT’s thank-you notes, and say good-bye to students.

Week#15, May 4, 2004 12:45 – 2:45 EH Room 109. FINALS WEEK.

In Class
• Turn in your constructing/reflecting benchmarks and technology lessons plans. Share these and your curriculum project with other class members. Enjoy each other’s company!