Tax competition and governmental efficiency: Theory and evidence

Maksym Ivanyna
Bavarian Graduate Program in Economics, Michigan State University

IIPF Congress - 25 Aug 2008
Picture instead of words

Note: CIT - corporate income tax; EU-Core - France, Germany, Belgium, Netherlands; CEEC - Poland, Czech Republic, Slovakia, Slovenia, Hungary; EU-Periphery - Spain, Portugal, Greece
Picture instead of words

Note: CIT - corporate income tax; EU-Core - France, Germany, Belgium, Netherlands; CEEC - Poland, Czech Republic, Slovakia, Slovenia, Hungary; EU-Periphery - Spain, Portugal, Greece

- no restrictions on capital movement;

- empirical studies do find evidence of strategic interaction between European governments
Note: CIT - corporate income tax; EU-Core - France, Germany, Belgium, Netherlands; CEEC - Poland, Czech Republic, Slovakia, Slovenia, Hungary; EU-Periphery - Spain, Portugal, Greece

- no restrictions on capital movement;
- empirical studies do find evidence of strategic interaction between European governments

- **2005**: CIT (EATR) ranged from 11% Latvia and Ireland to 34% in Belgium
Main contribution

• Explanation for asymmetric outcome of fiscal competition
Main contribution

• Explanation for asymmetric outcome of fiscal competition

• 2 claims:
Main contribution

• Explanation for asymmetric outcome of fiscal competition

• 2 claims:
 – governments differ in how they spend tax revenue
Main contribution

• Explanation for asymmetric outcome of fiscal competition

• 2 claims:
 – governments differ in how they spend tax revenue
 – firms differ in their need for public input
Main contribution

• Explanation for asymmetric outcome of fiscal competition

• 2 claims:
 – governments differ in how they spend tax revenue
 – firms differ in their need for public input

• Result: More efficient government sets higher tax if
Main contribution

• Explanation for asymmetric outcome of fiscal competition

• 2 claims:
 – governments differ in how they spend tax revenue
 – firms differ in their need for public input

• Result: More efficient government sets higher tax if
 – governments are sufficiently different in their efficiency
 – production function of a firm is sufficiently concave in public good
Main contribution

- Explanation for asymmetric outcome of fiscal competition

- 2 claims:
 - governments differ in how they spend tax revenue
 - firms differ in their need for public input

- **Result:** More efficient government sets higher tax if
 - governments are sufficiently different in their efficiency
 - production function of a firm is sufficiently concave in public good

- Empirical evidence in OECD countries supports the theory
• IEF - efficiency proxy

• IEF and CIT - negative correlation: more efficient governments do set higher taxes
Place in literature

Other explanations for asymmetric equilibrium - 2 branches:
Place in literature

Other explanations for asymmetric equilibrium - 2 branches:

• **1st branch:** symmetric countries \Rightarrow asymmetric outcomes
Place in literature

Other explanations for asymmetric equilibrium - 2 branches:

- **1st branch**: symmetric countries \Rightarrow asymmetric outcomes
 - due to agglomeration economies,
Place in literature

Other explanations for asymmetric equilibrium - 2 branches:

• **1st branch**: symmetric countries \Rightarrow asymmetric outcomes
 - due to agglomeration economies,
 - competition in both tax rate and public spending
Place in literature

Other explanations for asymmetric equilibrium - 2 branches:

- **1st branch:** symmetric countries ⇒ asymmetric outcomes
 - due to agglomeration economies,
 - competition in both tax rate and public spending

- **In my model:** there are things but pure luck driving the asymmetric outcome
Place in literature

Other explanations for asymmetric equilibrium - 2 branches:

• **1st branch:** symmetric countries ⇒ asymmetric outcomes

 - due to agglomeration economies,

 - competition in both tax rate and public spending

• **In my model:** there are things but pure luck driving the asymmetric outcome

• **2nd branch:** exogenous asymmetry between countries ⇒ asymmetry in equilibrium
Place in literature

Other explanations for asymmetric equilibrium - 2 branches:

- **1st branch**: symmetric countries ⇒ asymmetric outcomes
 - due to agglomeration economies,
 - competition in both tax rate and public spending

- **In my model**: there are things but pure luck driving the asymmetric outcome

- **2nd branch**: exogenous asymmetry between countries ⇒ asymmetry in equilibrium
 - kinds of asymmetry: population, capital endowment
Place in literature

Other explanations for asymmetric equilibrium - 2 branches:

• **1st branch:** symmetric countries \Rightarrow asymmetric outcomes
 - due to agglomeration economies,
 - competition in both tax rate and public spending

• **In my model:** there are things but pure luck driving the asymmetric outcome

• **2nd branch:** exogenous asymmetry between countries \Rightarrow asymmetry in equilibrium
 - kinds of asymmetry: population, capital endowment
 - general conclusion: bigger country sets higher tax
Place in literature

Other explanations for asymmetric equilibrium - 2 branches:

• **1st branch:** symmetric countries \Rightarrow asymmetric outcomes
 - due to agglomeration economies,
 - competition in both tax rate and public spending

• **In my model:** there are things but pure luck driving the asymmetric outcome

• **2nd branch:** exogenous asymmetry between countries \Rightarrow asymmetry in equilibrium
 - kinds of asymmetry: population, capital endowment
 - general conclusion: bigger country sets higher tax

• **However:** 2005: Belgium - 34% \Rightarrow Greece - 32% \Rightarrow Poland - 19%
Modeling innovation

- Common feature of the models above: the production function of the government is

\[g = x \]

\(g \) - public good, \(x \) - revenue
Modeling innovation

- Common feature of the models above: the production function of the government is

\[g = x \]

\(g \) - public good, \(x \) - revenue

- **In my model:** Governments have asymmetric production functions:
Modeling innovation

• Common feature of the models above: the production function of the government is

 \[g = x \]

 \(g \) - public good, \(x \) - revenue

• **In my model:** Governments have asymmetric production functions:

 \[g_A = bx_A, g_B = x_B, b > 1 \]

 \(A, B \) - indices of the countries, \(b \) - efficiency parameter
Modeling innovation

- Common feature of the models above: the production function of the government is

\[g = x \]

- public good, \(x \) - revenue

- **In my model:** Governments have asymmetric production functions:

\[g_A = bx_A, \quad g_B = x_B, \quad b > 1 \]

- \(A, \quad B \) - indices of the countries, \(b \) - efficiency parameter

- main assumption driving the results
Main features of the model

- 2 countries, \(A \) and \(B \), continuum of absentee owned firms
Main features of the model

- 2 countries, A and B, continuum of absentee owned firms

- Firms:
Main features of the model

• 2 countries, A and B, continuum of absentee owned firms

• **Firms:**
 - want to make an investment, produce one unit of a good, and sell it on the world market
Main features of the model

- 2 countries, \(A \) and \(B \), continuum of absentee owned firms

- Firms:
 - want to make an investment, produce one unit of a good, and sell it on the world market
 - profit function of firm \(s \):

\[
\Pi_i = p - c - \tau_i + sg_i^\theta, \ i \in \{A, B\}
\]

\(p \) - price of the good, \(c \) - cost of production - both **exogenous**
\(\tau_i \) - tax rate in country \(i \), \(g_i \) - amount of public goods,
\(s \sim U[0, 1] \) measures the need for public input,
smaller \(\theta \) means more concavity
Main features of the model

• 2 countries, A and B, continuum of absentee owned firms

• Firms:
 - want to make an investment, produce one unit of a good, and sell it on the world market
 - profit function of firm s:

\[
\Pi_i = p - c - \tau_i + sg_i^\theta, \ i \in \{A, B\}
\]

p - price of the good, c - cost of production - both \textbf{exogenous}

τ_i - tax rate in country i, g_i - amount of public goods,

$s \sim U[0, 1]$ measures the need for public input,

smaller θ means more concavity

– invest where after-tax profits are higher
Main features of the model

• 2 countries, A and B, continuum of absentee owned firms

• Governments:
Main features of the model

- 2 countries, A and B, continuum of absentee owned firms

- **Governments:**
 - maximize tax revenues less public spending
Main features of the model

- 2 countries, A and B, continuum of absentee owned firms

- **Governments:**
 - maximize tax revenues less public spending
 - objective function of gov’t A, given τ_B and g_B:

$$
\max_{\tau_A, g_A} \tau_A \times (1 - \hat{s}_B) - g_A/b, \ b > 1
$$
Main features of the model

- 2 countries, A and B, continuum of absentee owned firms

- **Governments:**

 - maximize tax revenues less public spending
 - objective function of gov't A, given τ_B and g_B:

 $$\max_{\tau_A, g_A} \tau_A * (1 - \hat{s}_B) - g_A/b, \ b > 1$$

 - objective function of gov't B, given τ_A and g_A:

 $$\max_{\tau_B, g_B} \tau_B * \hat{s}_B - g_B$$

 \(\hat{s}_B\) - share of firms investing in country B
Objectives of the governments

... are consistent with 2 views on their nature:

- Governments are malevolent:

 revenues less spending = rents to the office
Objectives of the governments

... are consistent with 2 views on their nature:

- Governments are benevolent:

 revenues less spending = funds, which can be distributed to the population in an optimal way
Solution

2 steps:
Solution

2 steps:

• Solve the game assuming that in equilibrium

\[\tau_A > \tau_B \text{ and } g_A > g_B \]
Solution

2 steps:

• Solve the game assuming that in equilibrium

\[\tau_A > \tau_B \text{ and } g_A > g_B \]

• Prove it is indeed the only equilibrium in pure strategies.
Solution: Step 1 - fast forward

• $\tau_A > \tau_B$ and $g_A > g_B$. Then in equilibrium:

$$\begin{align*}
\tau_A &= \frac{2}{3} \Delta, \quad g_A = \left(\frac{2\theta b}{9}\right)^{\frac{1}{1-\theta}}, \\
\tau_B &= \frac{1}{3} \Delta, \quad g_B = \left(\frac{\theta}{9}\right)^{\frac{1}{1-\theta}},
\end{align*}$$

(1) (2)

where $\Delta = g_A^\theta - g_B^\theta$, b - efficiency parameter, θ - concavity parameter
Solution: Step 1 - fast forward

- $\tau_A > \tau_B$ and $g_A > g_B$. Then in equilibrium:

\[
\tau_A = \frac{2}{3}\Delta, \quad g_A = \left(\frac{2\theta b}{9}\right)^{\frac{1}{1-\theta}},
\]

(3)

\[
\tau_B = \frac{1}{3}\Delta, \quad g_B = \left(\frac{\theta}{9}\right)^{\frac{1}{1-\theta}},
\]

(4)

where $\Delta = g_A^\theta - g_B^\theta$, b - efficiency parameter, θ - concavity parameter

- τ_A, τ_B, g_A increase with b, g_B - not
Solution: Step 1 - fast forward

- $\tau_A > \tau_B$ and $g_A > g_B$. Then in equilibrium:

\[\tau_A = \frac{2}{3}\Delta, \quad g_A = \left(\frac{2\theta b}{9}\right)^{\frac{1}{1-\theta}}, \quad (5) \]

\[\tau_B = \frac{1}{3}\Delta, \quad g_B = \left(\frac{\theta}{9}\right)^{\frac{1}{1-\theta}}, \quad (6) \]

where $\Delta = g_A^\theta - g_B^\theta$, b - efficiency parameter, θ - concavity parameter

- τ_A, τ_B, g_A increase with b, g_B - not

- τ_A, τ_B, g_A, g_B - all increase with θ
Solution: Step 2 - even faster

- This is the only equilibrium in pure strategies if:
 - Responses of each government are indeed optimal under our general assumptions;
 - There are no other equilibria in pure strategies.
Solution: Step 2 - even faster

- This is the case if θ and b satisfy:

Note: b - efficiency parameter, θ - concavity parameter
Solution: Step 2 - even faster

• This is the case if θ and b satisfy:

Note: b - efficiency parameter, θ - concavity parameter

• b should be sufficiently big - difference between governments;
Solution: Step 2 - even faster

- This is the case if θ and b satisfy:

![Graph](image)

Note: b - efficiency parameter, θ - concavity parameter

- b should be sufficiently big - difference between governments;

- θ should be sufficiently small - firms are more elastic.
Empirics

- Sample: 28 (mostly) OECD countries, years 1996-2005
Empirics

- Sample: 28 (mostly) OECD countries, years 1996-2005

- Estimation model:

\[\tau_{i,t} = \alpha + \beta b_{i,t} + \theta X_{i,t} + \epsilon_{i,t}, \]
Empirics

• Sample: 28 OECD countries, years 1996-2005

• Estimation model:

\[\tau_{i,t} = \alpha + \beta b_{i,t} + \theta X_{i,t} + \epsilon_{i,t}, \]

- \(i = 1..28 \) - index of a country, \(t = 1996..2005 \) - year
Empirics

- Sample: 28 OECD countries, years 1996-2005

- Estimation model:

\[\tau_{i,t} = \alpha + \beta b_{i,t} + \theta X_{i,t} + \epsilon_{i,t}, \]

- \(i = 1..28 \) - index of a country, \(t = 1996..2005 \) - year
- \(\tau_{i,t} \) - tax rate in country \(i \) in year \(t \), \(X_{i,t} \) - country-specific controls
Empirics

• Sample: 28 OECD countries, years 1996-2005

• Estimation model:

\[\tau_{i,t} = \alpha + \beta b_{i,t} + \theta X_{i,t} + \epsilon_{i,t}, \]

- \(i = 1..28 \) - index of a country, \(t = 1996..2005 \) - year
- \(\tau_{i,t} \) - tax rate in country \(i \) in year \(t \), \(X_{i,t} \) - country-specific controls
- \(b_{i,t} \) - control for governmental efficiency
Empirics

• Sample: 28 OECD countries, years 1996-2005

• Estimation model:

\[\tau_{i,t} = \alpha + \beta b_{i,t} + \theta X_{i,t} + \epsilon_{i,t}, \]

- \(i = 1..28 \) - index of a country, \(t = 1996..2005 \) - year
- \(\tau_{i,t} \) - tax rate in country \(i \) in year \(t \), \(X_{i,t} \) - country-specific controls
- \(b_{i,t} \) - control for governmental efficiency

• Prediction: \(\beta > 0 \)
Empirics

• Sample: 28 OECD countries, years 1996-2005

• Estimation model:

\[\tau_{i,t} = \alpha + \beta b_{i,t} + \theta X_{i,t} + \epsilon_{i,t}, \]

- \(i = 1..28 \) - index of a country, \(t = 1996..2005 \) - year
- \(\tau_{i,t} \) - tax rate in country \(i \) in year \(t \), \(X_{i,t} \) - country-specific controls
- \(b_{i,t} \) - control for governmental efficiency

• Prediction: \(\beta > 0 \)
 - Indeed, 2 countries - \(b_1 > b_2 \).
Empirics

- Sample: 28 OECD countries, years 1996-2005

- Estimation model:

\[\tau_{i,t} = \alpha + \beta b_{i,t} + \theta X_{i,t} + \epsilon_{i,t}, \]

- \(i = 1 \ldots 28 \) - index of a country, \(t = 1996 \ldots 2005 \) - year
- \(\tau_{i,t} \) - tax rate in country \(i \) in year \(t \), \(X_{i,t} \) - country-specific controls
- \(b_{i,t} \) - control for governmental efficiency

- Prediction: \(\beta > 0 \)

- Indeed, 2 countries - \(b_1 > b_2 \).
- Then

\[\tau_1 > \tau_2 \iff \beta (b_1 - b_2) > 0 \iff \beta > 0 \]
Empirics

• Data:
 – proxy for tax rate - EATR
Empirics

• Data:
 - proxy for tax rate - EATR
 - proxy for gov't efficiency - IEF, (also GDP per capita). Why?
 * Simplicity, availability of data;
Empirics

• Data:
 – proxy for tax rate - EATR
 – proxy for gov't efficiency - IEF, (also GDP per capita). Why?
 ∗ Simplicity, availability of data;
 ∗ IEF’s criteria for an ”efficient governance” should in general coincide with firm’s preferences;
Empirics

• Data:

 - proxy for tax rate - EATR
 - proxy for gov't efficiency - IEF, (also GDP per capita). Why?
 * Simplicity, availability of data;
 * IEF’s criteria for an ”efficient governance” should in general coincide with firm’s preferences;
 * sample is homogeneous in terms of governance institutions:

<table>
<thead>
<tr>
<th></th>
<th>DB</th>
<th>WGI</th>
<th>GQI</th>
<th>CPI</th>
<th>HDI</th>
<th>Cereal</th>
<th>GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEF</td>
<td>-0.61</td>
<td>-0.72</td>
<td>-0.78</td>
<td>-0.65</td>
<td>-0.55</td>
<td>-0.38</td>
<td>-0.51</td>
</tr>
</tbody>
</table>

Note The correlations of IEF with the corresponding indices and indicators are reported. Here: DB - Ease of Doing Business inverse ranking; WGI - Worldwide Governance Indicators aggregate index; GQI - Governance Quality Index; CPI - Transparency International’s Corruption Perception Index; HDI - United Nation’s Human Development Index; Cereal - average cereal yield (kg per hectare); GDP - GDP per capita in international dollars.
Empirics

• Relation between EATR and IEF:
Empirics

- Relation between EATR and IEF:

- I use OLS
Empirics

• Results:

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>EU-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>dependent</td>
<td>eatr</td>
<td>eatr</td>
</tr>
<tr>
<td>variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ief</td>
<td>0.036**</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>gdp_cap</td>
<td>0.008***</td>
<td>0.007***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.64</td>
<td>0.86</td>
</tr>
<tr>
<td>N obs.</td>
<td>300</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>308</td>
<td>143</td>
</tr>
</tbody>
</table>
Empirics

• Results:
 – theoretical predictions are supported
Empirics

• Results:
 – theoretical predictions are supported
 – decrease in IEF on 0.1 (sample mean - 2.25, st.variation - 0.54) ⇒
 increase in EATR on 0.36 p.p. (mean - 22, sd.var. - 0.8)
Empirics

• Results:
 – theoretical predictions are supported
 – decrease in IEF on 0.1 (sample mean - 2.25, st.variation - 0.54) ⇒ increase in EATR on 0.5 p.p. (mean - 22, sd.var. - 0.8)
 – increase in GDP per capita on 1000 int.dollars (app. 4.3% GDP growth, av. GDP per capita growth in 2004-05 - 670 int.dollars) ⇒ increase in EATR on 0.8 p.p.
Conclusions

- **Main result of the paper** - more efficient government sets the higher corporate income tax rate (if countries are sufficiently different and production function is concave enough)
Conclusions

- **Main result of the paper** - more efficient government sets the higher corporate income tax rate (if countries are sufficiently different and production function is concave enough)

- Recent empirical evidence from OECD countries supports the theory