CSS 921 Geostatistics
Fall 2009

Instructor:
Sasha Kravchenko
kravche1@msu.edu
355-0271 ext 1241
A376 Plant & Soil Sci Bldg

Email
Phone
Office

Office Hours:
Tu 1-3 pm at A376 Plant & Soil Sci Bldg

Class meets:
MW 10:20-11:40 am at 149 Plant & Soil Sci Bldg

Credits: 3

Course web site:
http://courses.css.msu.edu/

Grading scale:
90% of the total points for the semester 4.0
80% of the total points for the semester 3.5
70% of the total points for the semester 3.0
60% of the total points for the semester 2.5
50% of the total points for the semester 2.0
40% of the total points for the semester 1.5
Less than 40% of the total points for the semester 1.0

Percentage distribution:
Homework 50%
Due every other week

Project
Due one week before the finals 50%

Required textbook:

Recommended reading:
Course objectives and outline:

The main focus of the course will be detailed introduction of geostatistical methodology with emphasis on applications in agricultural and environmental research. The following main topics will be discussed: spatial variability and its characterization; mapping agricultural and environmental variables via geostatistical tools; and accounting for spatial variability in analysis of designed experiments.

Outline:

1) Spatial continuity and its description for individual variables and pairs of variables:
 a) semi-variogram, covariance, correlogram, general relative variogram, cross-variogram, cross-covariance, cross-correlogram;
 b) effect of number of samples and sampling configurations on accuracy of spatial variability characterization;
 c) applications of randomization, bootstrap, and Monte Carlo methods in spatial variability assessment.

2) Theory of regionalized variables.

3) Fitting variogram models via:
 a) ordinary least squares, weighted least squares, cross-validation;
 b) maximum likelihood methods.

4) Kriging - theory and applications:
 a) simple kriging;
 b) ordinary kriging;
 c) universal kriging;
 d) factorial kriging;
 e) effect of search neighborhood, i.e. number of samples and sampling configurations, on accuracy of kriging estimations.

5) Improving accuracy with secondary information:
 a) regression kriging;
 b) cokriging;
 c) principal component kriging;
 d) multivariate factorial kriging;
 e) factors influencing improvement in estimation accuracy with secondary information.

6) Assessment of spatial uncertainty - simulations:
 a) sequential Gaussian simulation;
 b) simulated annealing.

7) Including spatial information in the analysis of designed experiments:
 a) nearest neighbor analysis;
 b) trend analysis;
 c) random field analysis.

8) Additional topics:
 a) fuzzy kriging;
 b) characterizing variability in space and time.