The Plateau in U.S. Women's Labor Force Participation: 
A Cohort Analysis

Jin Young Lee*
Department of Economics
Michigan State University

This draft: December 3, 2012

Abstract
After going up steadily for the last century, the female labor force participation (FLFP) rate in the United States suddenly leveled off in the early 1990s. Using March Current Population Survey data from 1968 to 2010, I investigate changes in FLFP rates and related socioeconomic outcomes of women. I find that, to a first approximation, the plateau in FLFP can be characterized as a leveling off in labor force participation for birth cohorts from the 1950s on. I also conduct a series of shift-share analyses that decompose changes in labor force participation into within-group and composition effects, with groups defined by educational attainment, marital status, and child-rearing status. These analyses show that both the rising FLFP up through the cohorts of the early 1950s and the subsequent plateau appear within virtually all groups. The main qualification to this simple summary is that, among women under the age of 30, rising FLFP continued beyond the cohorts of the early 1950s up through those of the early 1970s. The prolonged upward trend in that age group was closely intertwined with the trends away from early marriage and childbearing. I recommend that this constellation of facts be used to guide further research on the causes of trend shifts in women’s labor force participation and related socioeconomic outcomes.

Keywords: Female labor force participation, socioeconomic outcomes, decomposition, cohort differences, within-group effect, composition effect

JEL Classification: I20, J11, J12, J13, J16

*Department of Economics, Michigan State University, 206 Old Botany, East Lansing, MI 48824; E-mail: leejin9@msu.edu. I am grateful to Gary Solon, Stacy Dickert-Conlin, and Steven Haider for their valuable comments and guidance. I also thank Do Won Kwak for helpful discussions.
I. Introduction

One of the most remarkable changes in the U.S. labor market in the twentieth century was a massive increase in the rate of female labor force participation (FLFP). The FLFP rate was only 17 percent in 1890 (Goldin 2000, Table 10.1), but had more than tripled by a century later, reaching 59 percent in 1994 (Figure 1). This trend seems even more dramatic when contrasted with the gradual decline in men’s labor force participation.¹ Since 1994, however, an important new pattern has emerged: after many decades of trending upward, the FLFP rate has leveled off at around 60 percent.² This recent stagnation in the labor force involvement of U.S. women is rare even in world economies (U.S. Bureau of Labor Statistics, table of women’s labor force participation rates, selective countries, 1970-2009, available at http://www.bls.gov/spotlight/2011/women/).

The end of the upward trend in U.S. women’s labor force participation is an important and puzzling phenomenon. For example, labor economists traditionally have described the long-running rise in women’s labor force participation as a movement along a positively sloped labor supply curve in response to real wage growth. The plateau in women’s labor force participation, however, has occurred despite continued real wage growth (Eckstein and Lifshitz, 2011). A simple labor supply story therefore cannot account for the trend shift unless it involves a credible explanation for why the labor supply curve for women switched from quite positively sloped to inelastic.


² Although the 1994 Current Population Survey redesign has caused changes in the measurement of many of the statistics derived from the CPS (Polivka and Miller, 1998), trends in the FLFP are not sensitive to the redesign. All estimates presented in this paper are based on data unadjusted for the 1994 CPS redesign. Changes in the percent institutionalized also are not an issue because the trend in the fraction of women institutionalized was stable over time. My calculation using U.S. Censuses shows that the percentages of women institutionalized (correctional and mental institutions and institutions for the elderly, handicapped, and poor) in 1980, 1990 and 2000 are 1.37, 1.49, and 1.34, respectively.
This paper uses March Current Population Survey data from 1968 to 2010 to assemble a clear and detailed catalog of facts about the plateau in U.S. women’s labor force participation. Following and extending earlier work by Goldin (2006) and Fallick and Pingle (2007), I find that a great deal of what has happened to FLFP can be succinctly summarized in terms of trends across birth cohorts. In addition to providing a more up-to-date cohort analysis, I conduct shift-share analyses that document within-group trends and composition effects based on disaggregations by educational attainment, marital status, and child care responsibilities. In the end, I deliver a constellation of evidence about the trends in women’s labor force participation and related socioeconomic outcomes that I hope will stimulate and guide further research into the causes of the shifting trends.

Although numerous recent studies have analyzed FLFP in the United States, these studies are less comprehensive than mine in that they cover shorter time periods, are restricted to particular subpopulations, or provide no shift-share analyses using related socioeconomic outcomes. For example, Boushey (2005) and Hoffman (2009) find that the negative effects of children on labor force participation for women aged 25 to 44 fell over time in the Current Population Survey’s Outgoing Rotation Group data for 1984, 1989, 1993, 2000, and 2004. Percheski (2008) investigates cohort differences in female employment rates using data from decennial Censuses for 1960 through 2000 and the American Community Survey for 2005, but she restricts her samples to professional women. Goldin (2006) explores how women's employment, education, and family status have transformed together using various data sources, with an emphasis on the period before

---

3 Aaronson et al. (2006) and Percheski (2008) are other precedents.

4 Race is also an important demographic variable that may interact with women's labor supply, but it plays a minor role in explaining the plateau. Since the early 1990s, the FLFP rate among white women has shown a leveling-off, and the rate among black women has displayed a very slight decline. My sample includes all race and ethnic groups. Results in this paper still hold when the population is limited to white women only.
the 2000s. Her conjecture that the plateau in FLFP was a temporary phenomenon due to the recession of the early 2000s is testable (and refuted) by my updating of the evidence through 2010. Macunovich (2010) presents the change in FLFP by socioeconomic subgroup over time using March CPS data for 1976 through 2009, but does not look at compositional changes of the subgroups. Fallick and Pingle (2007) do decompose the changes in male and female labor force participation rates over time into group-share and within-group changes, but the subgroups for their decompositions are based only on age.

II. Data

My data come from the Integrated Public Use Microdata Series (IPUMS) version of the March Current Population Surveys (CPS) for 1968 through 2010. I restrict my sample to non-institutionalized civilian women aged 16 – 64. I do not include observations before 1968 because a variable “MOMLOC,” which is used to link mothers to their own children, is not available for those observations. Throughout this paper, I use single-year birth cohorts and five-year age bins (or a four-year age bin for the youngest age group). Thus, each cohort includes women born in the reference year, and the whole sample is divided into ten age groups, from age group 16-19 to 60-64. Birth year is calculated as calendar year minus age. In order to retain a sufficient sample size for each age-cohort group, the figures are based on the cohorts 1932-1982. To compute averages for each subpopulation, I use CPS-provided sampling weights. Under the simplifying approximation that the covariance of sampling errors between any two age-cohort groups is zero, most of my standard error estimates are less than 0.001. Therefore, I do not clutter my figures with confidence bands.

5 The exception is Figure 1, which is based on a sample of U.S. men and women age 16 or older from 1948 to 2010.
III. Cohort shifts in labor force participation and related socioeconomic outcomes of women

A. Birth cohort and FLFP

Figure 2A displays the life-cycle trajectories of labor force participation of women. The figure presents only nine of the cohorts for expositional simplicity. (The trajectory for the 1982 cohort is hardly distinguishable from those for the cohorts 1964-1976 due to their overlapping.) The choice of the cohorts is arbitrary and has no bearing on the conclusions. For the cohorts up through the 1952 birth year, the life-cycle trajectories are strongly inverse-U-shaped, with labor force participation peaking in the late forties. For more recent cohorts, the trajectories are still concave, but less strongly so in the sense that labor force participation is higher in the twenties than was the case for earlier cohorts.

The most central pattern for purposes of this paper is that, comparing across cohorts, labor force participation rose up through the 1952 cohort and stopped rising for subsequent cohorts. This is a very strong pattern for women in their thirties or older. For example, the FLFP rate in age group 35-39 was 60 percent for the 1940 cohort, 68 percent for the 1946 cohort, and 76 percent for the 1952 cohort, and then it essentially has held steady for subsequent cohorts: 76 percent for the 1958 cohort, 77 percent for the 1964 cohort, and 75 percent for the 1970 cohort.

The exception to this pattern is that labor force participation for younger women continued to rise up through the 1970 cohort and then leveled off. Later in this paper, I will examine the roles of delayed marriage and child rearing in accounting for that pattern.

To examine what happened between the intervening cohorts around the plateau, Figure 2B presents the trajectories for the cohorts 1952-1958. The figure confirms that the rise in FLFP for women in their thirties and older was brought to an end by the cohorts born after 1952. For

---

6 Fallick and Pingle (2007) also point out that FLFP leveled off with the cohorts born in the early 1950s.
example, for women aged 35-39, the FLFP rates for the 1952, 1953, and 1954 cohorts were 76, 75, and 76 percent, respectively.

B. Educational attainment

As noted by many writers (for example, Goldin, Katz, and Kuziemko, 2006), the rise in women’s labor force participation was accompanied by a rise in women’s educational attainment. In this section, I reaffirm the trend in women’s educational attainment, and I explore its connection to the rise and plateau in women’s labor force participation.

I divide the sample into three education categories: high school or less, some college, and college completion or more. Women with high school or less education represent female high school dropouts and graduates; women with some college education include those who had some college experience but no bachelor’s degree; women with college completion or more denote women with a bachelor's degree. In order to construct a measure of educational attainment that is consistent over my sample period, I adopt the methodology proposed by Jaeger (1997).

Figure 3 shows the fraction of women by educational attainment and birth cohort, for age group 25-29. The figure confirms the familiar finding that women’s educational attainment has risen dramatically across cohorts. While the high school fraction has declined significantly, both fractions of some college and college completion or more have risen in parallel. For example, 64 percent of women born in 1948 had not gone to college as of their late twenties. Women born 33 years later, in contrast, showed a complete reversal: about 64 percent of women had attended college by the same age. For the 1965 and subsequent cohorts, more than half of women attended college in this age group. In terms of time period, this indicates that by the early 1990s, when the

---

7 Because of a 1992 change in CPS coding of educational attainment, the trend in high school graduation before 1992 is not comparable to the trend after 1992. I therefore merge the high school dropouts and graduates into one category.
plateau in FLFP appeared, the fraction of women with college education began to exceed the fraction without.

Interestingly, unlike the FLFP rate, the fraction attending college continued to rise beyond the cohorts born in the early 1950s. The fraction for women aged 25-29 continued to rise until cohorts born in the early 1970s, and then it leveled off. An important topic for further research is why the plateau in women’s college-going occurred 20 years after the plateau in labor force participation. Lee (2012) suggests that the trend towards higher work expectations of young women across birth cohorts may partly account for the upward trends in women's college attendance and completion.

Figure 4 presents more information on the connection between the trends in FLFP and women’s educational attainment. The three panels of Figure 4 display FLFP rates within each education category. Comparing the three panels shows that FLFP rates regularly have been greater for more educated women. Comparing cohorts within each panel shows that both the rise and plateau in FLFP appear similarly in all education categories. The figure displays the difference between younger age groups across education categories for cohorts born after 1952. The participation rate was higher in the late twenties than in the early thirties for women with college education, while the opposite was true for women without college education. In combination, these comparisons suggest that trends in FLFP must be related to both the within-education-category trends and the changing fraction of women with college education.

To quantify the connection between trends in FLFP and educational attainment, I proceed to a “shift-share” analysis. Let $y^d$ be a dummy variable that equals one if a woman in group $d$ is in the labor force and zero otherwise. For now, $d$ is a multiple-category variable that equals one if a woman has high school education, two if she has college experience, and three if she has a
bachelor’s degree. (In a later section, \( d \) will have categories more than three involving various combinations of college-going, marriage, and child rearing.) Note that the overall FLFP rate \( \bar{y} \) can be written as \( \sum_d \pi^d \bar{y}^d \), where \( \pi^d \) denotes group \( d \)'s population share and \( \bar{y}^d \) is group \( d \)'s labor force participation rate. Then the change in the overall FLFP rate between cohorts \( s \) and \( t \) can be decomposed as:

\[
\bar{y}_t - \bar{y}_s = \sum_d \pi_t^d \cdot \bar{y}_t^d - \sum_d \pi_s^d \cdot \bar{y}_s^d \\
= \sum_d \pi_t^d \cdot \bar{y}_t^d + \sum_d \pi_t^d \cdot \bar{y}_s^d - \sum_d \pi_s^d \cdot \bar{y}_t^d - \sum_d \pi_s^d \cdot \bar{y}_s^d \\
= \sum_d \bar{y}_s^d \cdot (\pi_t^d - \pi_s^d) + \sum_d \pi_t^d \cdot (\bar{y}_t^d - \bar{y}_s^d) \\
\text{Composition effect} + \text{Within-group effect} \quad (1)
\]

The first element in the final expression indicates the composition effect, which is the change in labor force participation attributable to the change in the population share of each education category. The second component represents the within-group effect, which is the difference attributable to the changes in labor force participation within each education category.\(^8\)

Figure 5 summarizes the results of this decomposition for ages 35-39 and ages 25-29 since the decomposition results for women younger and older than 30 diverge substantially. Each decomposition is performed in a way that the FLFP rate of a given cohort is compared to the FLFP rate of a fixed base cohort. The base cohort is the earliest cohort observed in the data for a given age group. Thus, in Figures 5, 8 and 12, the base cohorts for age groups 35-39 and 25-29 are the

\(^8\) Of course, there are numerous ways of decomposing. Alternatively, equation (1) can be written as \( \bar{y}_t - \bar{y}_s = \sum_d \bar{y}^d_t \cdot (\pi_t^d - \pi_s^d) + \sum_d \bar{y}^d_t \cdot (\bar{y}^d_t - \bar{y}^d_s) \). I have performed decompositions using this alternative equation, and it turns out that the decomposition results are robust to ways of decomposing.
1933 and 1943 cohorts, respectively. Each decomposition figure contains four lines. The top solid line shows the FLFP rate by cohort, and the bottom solid line presents the FLFP rate of the base cohort, which is by definition a horizontal line. The broken red line and the solid blue line with a mark represent within-group and compositional changes, respectively. The composition effect for a given cohort plots the composition effect in equation (1) holding the within-group FLFP rates constant at the values for the base cohort. Thus, it shows what the FLFP rate would have been following the base cohort if there were only compositional changes. Similarly, the within-group change plots the within-group effect from equation (1) holding constant the population share of each education category.

The top panel of Figure 5 shows that, for ages 35-39, the rise in FLFP up through the cohorts of the early 1950s was driven almost entirely by the within-group effect, that is, by rising FLFP among all those with high school or less, some college, and college or more education. And the plateau for subsequent cohorts reflects the plateaus within all education categories. The bottom panel shows that, for ages 25-29, the rise in FLFP up through the cohorts of the early 1970s was driven predominantly by the within-group effect, but also to some extent by the rising shares of college attendees and graduates. The plateau after the early 1970s reflects leveling off in both the within-group labor force participation rates and the fractions going to college.

To describe the quantitative magnitudes more precisely, I provide Table 1 as a supplement to the decomposition figures. I pick up two arbitrary sets of cohorts, the 1946, 1958, and 1970 cohorts for age group 35-39 and the 1956, 1968, and 1980 cohorts for age group 25-29, and report the estimates for the cohorts shown in Figures 5, 8, 11, and 12 in Panels A, B, C, and D of Table 1, respectively. Columns (1), (2), and (3) respectively present the change in FLFP between the base cohort, the 1933 cohort, and each cohort from the former set; columns (4), (5), and (6) respectively
present the change in FLFP between the base cohort, the 1943 cohort, and each cohort from the latter set. Column (3) in Panel A of Table 1 indicates that seven percent (=1.75/26.01) of the total change in FLFP between the 1933 and 1970 cohorts for age group 35-39 was due to the changes in educational composition of women, whereas column (6) in the same panel implies that 16 percent (=5.02/30.64) of the change between the 1943 and 1980 cohorts for age group 25-29 was. Detailed within-group effects by category indicate that the within-group effects reported in both columns came almost evenly from the three education categories.

C. Marriage

Marriage patterns also have changed dramatically over the past half century (Isen and Stevenson, 2010). Figure 6A shows the fraction of women ever married (currently married, divorced, separated, or widowed) by age and birth year.\(^9\) The fraction plummeted for all age groups. The particularly large declines for women under age 30 reflect a trend towards later marriage. About 65 percent of women born in 1946 were ever married as of age 20-24. For women of the same age but born 30 years later, only 28 percent had been married. Since this sharp decline was accompanied by a rise in the share of college-educated women, one might think that marital delay is associated with women's college-going behavior. That conjecture is partly true because the share of ever-married women has been lower among those that attended college for most cohorts. Figure 6B, however, shows that the share of ever-married women has not dropped more for women with college than for women without college. For cohorts born in the late 1960s, the share of ever-married women was even higher among those that attend college as of age 35-39. For cohorts born before 1970, the share declined more rapidly among those that complete college as of age 25-29,

\(^9\) The figure does not include the series for women aged 45 or older because it is not much different from the series for women aged 40-44.
but the share for each education category showed a similar pattern of decline for the subsequent cohorts.

Figure 7 displays labor force participation rates by age and birth cohort disaggregated between ever-married and never-married women. The figure shows that never-married women traditionally have participated in the labor force more than ever-married women, but that the upward trend in FLFP up through the 1952 cohort was especially pronounced for ever-married women. Again, the two figures in combination suggest that both within-group trends and composition changes must have contributed to changes in FLFP.

Again, I perform a shift-share analysis to quantify the roles of within-group and composition changes. The framework is still as shown in equation (1), but this time with a binary categorization between ever-married and never-married women. The results are summarized in Figure 8. The top panel shows that, for women aged 35-39, the upward trend in labor force participation up through the cohorts of the early 1950s was driven almost entirely by rising labor participation within categories, but the detailed within-group effect reported in Panel B of Table 1 indicates that it is completely driven by ever-married women.

The lower panel shows that, for women aged 25-29, the upward trend in labor force participation up through the cohorts of the early 1950s was mostly driven by within-group trends, but also reflects the increasing share of women still not married by their late twenties. The continuing rise in FLFP after those cohorts entirely reflects a continued trend away from marriage by the late twenties. Column (6) in Panel B of Table 1 indicates that this trend contributed 46 percent (=14.10/30.64) of the change in FLFP between the 1943 and 1980 cohorts for age group 25-29.
D. Child rearing

Women’s labor force participation is strongly related to the presence of young children in the household, so I will define “child rearing” as the presence of children under the age of six. Figure 9 shows age-specific trends across cohorts in this measure of child rearing. The striking pattern is a trend towards later child rearing: child rearing in the twenties has declined, while child rearing in the thirties has increased. Of course, this pattern is connected to the trend towards later marriage. As women in more recent cohorts marry and have children later than those in earlier cohorts, the contrast across age groups becomes smaller. For example, among women born in 1946, 60 percent had young children while in their late twenties, compared to only 22 percent while in their late thirties. For women born 24 years later, 41 percent had young children while in their late twenties and 32 percent did in their late thirties.

Figure 10 shows labor force participation rates by age and cohort, disaggregated between women who do and do not have children under the age of six. A comparison of the two panels confirms that labor force participation is much lower among women with young children. The lower panel shows that, among women without young children, the rise in labor force participation leveled off after the 1952 cohort. In contrast, the upper panel shows that, among women with young children, labor force participation continued to rise at least through the cohorts of the early 1970s.

Figure 11 repeats the shift-share analysis, this time with a categorization between women with and without young children. The lower panel shows that, for women aged 25-29, the rise in labor force participation up through the cohorts of the early 1970s was driven mostly by upward within-group trends, but also by an increasing fraction of women without young children. The point

---

10 Although the age of six is a conventional cutoff, it is admittedly arbitrary. However, results using other age cutoffs (the ages of two, three, four, five and seven) do not change much from those in Figures 8 and 9.
can be more clearly illustrated using estimates shown in Panel C of Table 1. The estimates in column (5) in Panel C imply that 72 percent (=21.97/30.42) of the change in FLFP between the 1943 and 1968 cohorts was driven by the within-group effect, with a bigger within-group effect from women with young children. The other 28 percent of the change was driven by the change in women’s child-rearing composition between the two cohorts.

The upper panel in Figure 11 tells a different story about women aged 35-39. For them, the rise in labor force participation up through the cohorts of the early 1950s was driven almost entirely by rising labor participation within both groups, women with and without young children. For subsequent cohorts, the within-group effect actually exceeds the overall change in labor force participation. That is, the labor force participation rate would have been higher if not for a negative composition effect due to the increasing share of women with young children in this age group. The estimates in column (1) indicate that 87 percent (=16.51/19.01) of the change in FLFP between the 1933 and 1946 cohorts was driven by the within-group effect. The estimate of the composition effect in column (3) implies that the FLFP rate would have fallen between the 1933 and 1970 cohorts by 0.4 percentage points, had it not been for the within-group effect.

E. The joint contribution of education, marriage, and child rearing

Of course, the separate shift-share analyses in the previous sections overlook the possibility of interactions among the roles of education, marriage, and child rearing. This section extends the decomposition in equation (1) by using twelve categories: every combination of the three education categories, ever-married or never-married, and with or without children under the age of six.

The results, shown in Figure 12, are much as one would guess from the separate decompositions in the previous sections. For women aged 35-39, the rise in labor force participation up through the cohorts of the early 1950s is driven almost entirely by rising labor force
participation within categories. And the plateau for subsequent cohorts reflects a leveling off of labor force participation within categories. Column (3) in Panel D of Table 1 indicates that 14 percent (=3.65/26.01) of the change in FLFP between the 1933 and 1970 cohorts was due to the composition effect.

For women aged 25-29, the rise in labor force participation up through the cohorts of the early 1950s is driven by both within-group trends and by composition effects, with the latter mainly associated with the trends away from early marriage and childbearing. The subsequent rise in labor force participation up through the cohorts of the early 1970s is mostly driven by the continuation of the trends away from early marriage and childbearing. Column (6) in Panel D of Table 1 indicates that 46 percent (=14.21/30.64) of the change in FLFP between the 1943 and 1980 cohorts was driven by the composition effect.

IV. Summary and discussion

After many decades of trending upward, the female labor force participation rate in the United States hit a plateau in the early 1990s. Using data from March Current Population Surveys, I have documented salient aspects of this important social change. I have shown that, to a first approximation, the plateau can be parsimoniously characterized as a leveling off of labor force participation for birth cohorts from the early 1950s on. My series of shift-share analyses shows that, for the most part, both the plateau and the earlier upward trend appeared within every category broken down by education, marital status, and child rearing.

The main qualification to that simple summary is that, for women under the age of 30, labor force participation continued to rise up through the cohorts of the early 1970s. The shift-share analyses show that the continued rise for younger women was intertwined with the trends towards
later marriage and childbearing. I also have shown that the trend towards more college education
among women continued beyond the cohorts of the early 1950s. The composition effects from
educational attainment, marriage, and child rearing respectively contributed 7, 11, and -2 percent of
the changes in FLFP between the 1933 and 1970 cohorts for age group 35-39. The corresponding
contributions to the change in FLFP between the 1943 and 1980 cohorts for age group 25-29 are 16,
46, and 33 percent.

Of course, all of these findings beg the question of why these interrelated trends have
developed in the ways that they have. Goldin (2006), Juhn and Potter (2006), and Boushey (2005)
speculated that the plateau in women’s labor force participation may have been a temporary
response to the recession of the early 2000s, but my updating of the evidence refutes that
conjecture. To my knowledge, the most ambitious attempt to identify causes of the plateau is the
study by Fortin (2009), which argues that women in more recent cohorts have reverted to more
traditional gender role attitudes than women in preceding cohorts and that this change in gender role
attitudes explains at least a third of the plateau in FLFP.

Clearly, more research is needed. My hope is that, by providing a transparent summary of
the salient facts about recent developments in women’s labor force participation and related
socioeconomic outcomes, the present paper will stimulate and guide further research that will delve
more deeply into the causes of the shifting trends. For example, if real wage growth and advances
in home production technology are credited with explaining the long-running rise in women's labor
force participation, why did those forces become inoperative for cohorts born after the early 1950s?
References


Table 1. Decomposition in difference in FLFP rates between birth cohorts using socioeconomic outcomes of women

<table>
<thead>
<tr>
<th>Age group</th>
<th>35-39</th>
<th>25-29</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cohorts between 1933 and 1946</td>
<td>Cohorts between 1943 and 1956</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>A. Decomposition using educational attainment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total change in FLFP</td>
<td>19.01</td>
<td>26.79</td>
</tr>
<tr>
<td>Composition effect</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>Within-group effect</td>
<td>18.35</td>
<td>26.15</td>
</tr>
<tr>
<td>High school or less</td>
<td>10.08</td>
<td>10.15</td>
</tr>
<tr>
<td>Some college</td>
<td>4.69</td>
<td>10.30</td>
</tr>
<tr>
<td>College completion or more</td>
<td>3.59</td>
<td>5.69</td>
</tr>
<tr>
<td>B. Decomposition using marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total change in FLFP</td>
<td>19.01</td>
<td>26.79</td>
</tr>
<tr>
<td>Composition effect</td>
<td>0.25</td>
<td>1.76</td>
</tr>
<tr>
<td>Within-group effect</td>
<td>18.75</td>
<td>25.03</td>
</tr>
<tr>
<td>Ever-married</td>
<td>18.44</td>
<td>24.49</td>
</tr>
<tr>
<td>Never-married</td>
<td>0.31</td>
<td>0.55</td>
</tr>
<tr>
<td>C. Decomposition using child-rearing status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total change in FLFP</td>
<td>19.01</td>
<td>26.79</td>
</tr>
<tr>
<td>Composition effect</td>
<td>2.50</td>
<td>0.66</td>
</tr>
<tr>
<td>With children under 6</td>
<td>4.58</td>
<td>10.40</td>
</tr>
<tr>
<td>Without children under 6</td>
<td>11.92</td>
<td>15.73</td>
</tr>
<tr>
<td>D. Decomposition using joint variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total change in FLFP</td>
<td>19.01</td>
<td>26.79</td>
</tr>
<tr>
<td>Composition effect</td>
<td>3.06</td>
<td>2.55</td>
</tr>
<tr>
<td>Within-group effect</td>
<td>15.95</td>
<td>24.24</td>
</tr>
</tbody>
</table>

*Note:* The table reports selective estimates shown in Figures 5, 8, 11 and 12. The unit of the estimates is percentage point.

*Source:* 1968-2010 IPUMS-CPS
Figure 1. Labor force participation rates for men and women

Note: The figure shows civilian labor force participation rates of U.S. men and women age 16 or older.  
Source: BLS series report available at http://data.bls.gov/cgi-bin/srgate
Figure 2. Female labor force participation rates by age and cohort

A. 1934 - 1982 cohorts

B. 1952 - 1958 cohorts

Note: All figures throughout this paper use five-year age bins and single-year birth cohorts.
Source: 1968-2010 IPUMS-CPS
Figure 3. Women's educational attainment by cohort, ages 25-29

Note: High school or less category includes female high school dropouts and graduates as well as GED recipients. Some college includes women with three or less years of college education and/or women with an associate degree. College completion or more includes women with four or more years of college education and/or women with a bachelor's degree. Source: 1968-2010 IPUMS-CPS
Figure 4. Female labor force participation rates by educational attainment

A. High school or less

B. Some college

- 1934 cohort
- 1940 cohort
- 1946 cohort
- 1952 cohort
- 1958 cohort
- 1964 cohort
- 1970 cohort
- 1976 cohort
C. College completion or more

Source: 1968-2010 IPUMS-CPS
Figure 5. Decomposition of cohort difference in FLFP using educational attainment

A. Ages 35-39

B. Ages 25-29

Note: Decomposition is implemented on the FLFP change between base and given cohorts using a multiple-category education indicator. The base cohorts for age groups 35-39 and 25-29 are the 1933 and 1943 cohort, respectively. Source: 1968-2010 IPUMS-CPS
Figure 6. Fraction of women ever-married

A. By age group

Note: Ever-married women include currently married, divorced, separated and widowed women.

B. By educational attainment and selective age group

Note: Women with high school include both high school dropouts and graduates. Women with college completion or more mean women with a bachelor's degree.

Source: 1968-2010 IPUMS-CPS
Figure 7. Female labor force participation rates by marital status

A. Ever-married women

B. Never-married women

Source: 1968-2010 IPUMS-CPS
Figure 8. Decomposition of cohort difference in FLFP using marital status

A. Ages 35-39

Birth year

Note: Decompositions are implemented on the FLFP change between base and given cohorts using a dummy variable indicating whether a woman has been ever-married. The base cohorts for age groups 35-39 and 25-29 are the 1933 and 1943 cohort, respectively.

Source: 1968-2010 IPUMS-CPS
Figure 9. Fraction of women who have children under 6 in the household

Source: 1968-2010 IPUMS-CPS
Figure 10. Labor force participation rates for women with and without young children

A. Women with children under 6 in the household

B. Women without children under 6 in the household

Source: 1968-2010 IPUMS-CPS
Figure 11. Decomposition of cohort difference in FLFP using child-rearing status

A. Ages 35-39

B. Ages 25-29

Note: Decompositions are implemented on the FLFP change between base and given cohorts using a dummy variable indicating whether a woman has children under 6 in the household. The base cohorts for age groups 35-39 and 25-29 are the 1933 and 1943 cohort, respectively. Source: 1968-2010 IPUMS-CPS
Figure 12. Decomposition of cohort difference in FLFP using joint variable

A. Ages 35-39

B. Ages 25-29

Note: Decompositions are implemented on the FLFP change between base and given cohorts using a variable which indicates women's educational, marital, and child-rearing status jointly. The base cohorts for age groups 35-39 and 25-29 are the 1933 and 1943 cohort, respectively.

Source: 1968-2010 IPUMS-CPS