Exploring Commercial Redevelopment of Detroit Brownfields: Testing an Integrated GIS and Agent-Based Modeling Method

GEO 869 Geo Simulation

Qi Wang *
Jinwon Kim **
John Spielberg ***

Master’s Degree Student, Dept. of Construction Mgt *
Ph. D. Student, Dept. of CARRS **
Master’s Degree Student, Dept of CARRS ***
My GIS map is not bad. It’s Great!!

Do you know that this is modeling class?

My data and idea might be essential.
1. Introduction

1.1 Brownfield Redevelopment for Urban Regeneration

• Great attention of brownfield redevelopment for urban regeneration (De, 2000; Thomas, 2002; Lange & McNeil, 2004; Spielberg et al., 2008)

• Brownfield properties: abandoned, idled and potentially contaminated real property (U.S. Congress, 2002; USEPA, 2002)
1. Introduction

1.2 Importance of Brownfield Redevelopment

• The Importance of brownfield Redevelopment in local community

✓ Environmental benefits: Lange & McNeil, 2004
✓ Economic benefits: Walker, 2008; Chen et al., 2009
✓ Social benefits: Thomas, 2002
1. Introduction

1.3. Difficulties of Decision Making in Brownfield Redevelopment

• A wide range of risks that can decrease developers’ attention

• Lack of the specific research methods to support developers’ decision making in brownfield redevelopment

What is the method?
1. Introduction

1.4 Research Purpose and Specific Objectivities

Testing Commercial Redevelopment of Brownfield

- 1) Analyzing the influences of four factors that affect the location of brownfield for commercial purposes
- 2) Finding investment and duration per each brownfield
- 3) Calculating revenue and Return of Investment (ROI) period per each brownfield
- 4) Identifying and ranking the best candidate brownfield for commercial purposes

Research Objectives
1. Introduction

Brownfields in Downtown, Detroit
2. Methodology

2.1 Conceptual Model

Diagram showing relationships between various entities:
- **Developer**
 - Investment;
 - Potential Customers;
 - Time for Investment Return;
- **Resident**
 - Attractiveness to Commercial Center;
 - Monthly Expense;
 - Distance to Commercial Center;
- **Brownfield**
 - Investment;
 - Area;
 - Value;
 - Distance to Highway;
 - Distance to Park;
- **Commercial Center**
 - Value;
 - Distance to Highway;
 - Distance to Park;

The diagram illustrates the decision-making process involving Attraction and Competition between entities.
2. Methodology

2.2 Decision-Making Process

Start
Assume Select Brownfield (Bi) → Find Investment and Duration → Find Revenue and ROI → Find Best Brownfield

End

Developer

Redevelopment

Add Resident as Customer

Yes

Brownfield

Residents Evaluation

Choose Bi

Value, Distance, Transportation Convenience, etc.

Resident
2. Methodology

2.3. Decision-Making Rules

• Developers’ decision making
 ✓ Developers’ Decision-Making = \(f(\text{investment}, \text{number of customers}, \text{ROI period}) \)

• Resident decision making

\[\text{Attractiveness to } B_i = \frac{(\alpha \times \text{value})}{(\beta \times rstdToMall) \times (\gamma \times \text{disToHighway}) \times (\delta \times \text{disToPark})} \]

Rules

1. You can....
2. You can’t....
3. You can....
4. You can’t
2.4 Sensitivity Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>disToHighway</td>
<td>0.1</td>
<td>2.0</td>
<td>0.1</td>
</tr>
<tr>
<td>disToPark</td>
<td>0.1</td>
<td>2.0</td>
<td>0.1</td>
</tr>
<tr>
<td>rsdtToMall</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>
3. Results

3.1 Simulation Result (Cont.)

Larger circle represents more potential customers
3. Results

3.1 Simulation Result

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Customers Attracted by Brownfields</th>
<th>Time of Return of Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of Investment Capital (value)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influence of Resident to the Brownfield (rsdtToMall)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>2500</td>
</tr>
<tr>
<td>Value</td>
<td>1500</td>
</tr>
<tr>
<td>Value</td>
<td>1000</td>
</tr>
<tr>
<td>Value</td>
<td>500</td>
</tr>
<tr>
<td>Value</td>
<td>0</td>
</tr>
</tbody>
</table>

The graphs show the trend over time for both the number of customers attracted by brownfields and the time of return of investment.
3. Results

3.1 Simulation Result

<table>
<thead>
<tr>
<th>Influence of Brownfield to Highway (disToHighway)</th>
<th>Customers Attracted by Brownfields</th>
<th>Time of Return of Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Influence of Brownfield to Park (disToPark)</th>
<th>Customers Attracted by Brownfields</th>
<th>Time of Return of Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Result

3.2 Ranking of Brownfield based on Investment, Customers, and ROI

- For brownfields redevelopment, different factors will have different impacts.
- Based on different performance indicators, the ranking of the brownfields are different.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Investment</th>
<th>Customers</th>
<th>ROI Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brownfield 9</td>
<td>Brownfield 17</td>
<td>Brownfield 17</td>
</tr>
<tr>
<td>2</td>
<td>Brownfield 2</td>
<td>Brownfield 1</td>
<td>Brownfield 16</td>
</tr>
<tr>
<td>3</td>
<td>Brownfield 16</td>
<td>Brownfield 10</td>
<td>Brownfield 1</td>
</tr>
<tr>
<td>4</td>
<td>Brownfield 10</td>
<td>Brownfield 16</td>
<td>Brownfield 3</td>
</tr>
<tr>
<td>5</td>
<td>Brownfield 1</td>
<td>Brownfield 9</td>
<td>Brownfield 10</td>
</tr>
<tr>
<td>6</td>
<td>Brownfield 3</td>
<td>Brownfield 3</td>
<td>Brownfield 2</td>
</tr>
<tr>
<td>7</td>
<td>Brownfield 17</td>
<td>Brownfield 2</td>
<td>Brownfield 9</td>
</tr>
</tbody>
</table>
3. Result

3.3 Ranking of Brownfield based on potential competitors

For the developer, brownfield redevelopment needs to consider potential competitors.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Investment</th>
<th>Customers</th>
<th>ROI Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B 15: $1.39 million</td>
<td>B 17: 2992</td>
<td>B 14: 0.131</td>
</tr>
<tr>
<td>2</td>
<td>B 14: $1.92 million</td>
<td>B 14: 2837</td>
<td>B 15: 0.187</td>
</tr>
<tr>
<td>3</td>
<td>B 17: $2.93 million</td>
<td>B 15: 1423</td>
<td>B 17: 0.188</td>
</tr>
</tbody>
</table>
4.1 Some Implications and Discussions through this research

- This geo-simulation modeling as powerful spatial decision supporting system for developers’ decision making in brownfield redevelopment

Some implications through this research

- The power of information
- The role of local government (How to share the information to a number of stakeholders)
4. Conclusion

4.2 Limitations

- Lack of consideration for more diverse factors and attributes
- Lack of consideration for residences in Canada (Windsor area)
- Limited scenario (only considering commercial purposes)
4. Conclusion

4.3 Future Studies

- The current model should be further verified, validated and tested

- Application of this spatial modeling for other urban areas

- Application of this spatial modeling with more local and state brownfield redevelopment programs

- Revise the model for other redevelopment end uses such as recreational, mixed use, interim uses, or alternative energy production
Q & A
SESSION