Diagnostic Subsurface Horizons

- Currently ‘19 Subsurface Horizons’ recognized by Soil Taxonomy; Some are formed below the surface of the soil, although they may be exposed.

1.) **Agric** (ager, field) forms directly under a plow layer and has silt, clay, and humus accumulation as thick, dark lamellae.

2.) **Albic** (albus, white, ‘E Horizon’) a light-colored E Horizon, common under forests. *(Common in the UP!)*

3.) **Argillic** typically this is a B Horizon formed from the illuviation of soil clays.
 - Must be at least 15cm thick, Have 1.2 times as much Clay as above it,
 - Clay shows as argillians (clay skins) on soil peds.

4.) **Calcic** typically a B Horizon by the illuviation of calcium or magnesium carbonates (at least 15% carbonates).
 - Appears as white chalky zone (small nodules; at least 15 cm thick)
 - U.S. Great Plains & West

5.) **Cambic** ‘B Horizon’ with weak indications of either ‘spodic’ or ‘argillic’ horizon, but doesn’t qualify as either.

6.) **Duripan** (hard pan) ‘B Horizon’ that is cemented by alluvial silica, and will not dissolve in water or hydrochloric acid.

7.) **Fragipan** (fragile, brittle, pan) Layer or horizon that is very dense, brittle when moist, hard when dry. Will dissolve in water.

8.) **Glossic** transitional horizon at least 5 cm thick, usually occurs between an overlying albic/underlying argillic, kandic, or natric horizon or fragipan. (15-85% albic materials)

9.) **Gypsic** calcium sulfate (gypsum) enriched, at least 15 cm thick, contains 5%
 - more gypsum than underlying horizons.
 - Not cemented; Found in Arid Areas

10.) **Kandic** low activity clays and Fe and Al with an abrupt textual change (Tropics)
 - Clay skins may not be present

11.) **Natric** (natrium, sodium) Argillic horizons but has prismatic or ‘columnar peds’ and 15% sodium.
 - Egyptian Mummification Process!

12.) **Oxic** “Highly Weathered Horizon” at least 30 cm thick and contains less than 10% weatherable minerals.
 - Very high Fe and Al oxides and low activity silicate clays (kaolinite)
 - Common in wet tropical/subtropical settings

13.) **Petrocalcic** ‘cemented calcic horizon’, may form a concrete-like layer.
 - Common in dry areas with older surfaces

14.) **Petrogypsic** cemented gypsic horizon.
 - Roots cannot penetrate the horizon (common 60% gypsum)

15.) **Placic** single layer, thin (2-10 mm thick), dark reddish brown to black in color, iron or manganese pan, within 50 cm of the surface.

16.) **Salic** atleast 15 cm thick, secondary ‘soluble salt’ enriched!
 - Found in Arid Regions

17.) **Sombric** Dark organic matter-rich forms illuviation humus
 - Found in cool, high altitude areas of the Tropics and Sub-Tropics

18.) **Spodic** (wood, ash) illuvial accumulation of free Fe and Aluminum sesquioxides and/or organic matter, usually under an albic horizon.
 - Russia = ‘Podsol’
 - Commonly found in ‘humid continental climates’ under ‘acidic vegetation’ (pine)
 - *Most common ‘B Horizon’ in the UP!*

19.) **Sulfuric** (sulfuric) Mineral or organic horizon that has a PH < 3.5
 - Toxic to plant roots
 - Has a yellow mottles of jarosite (sulfur minerals)
 - Forms as a result of artificial drainage/oxidation of sulfide-rich mineral or organic materials.
 - Sometimes occurs with drainage of wetlands.
Other Diagnostic Features
Abrupt Textural Changes

Durinodes (hard circular concentrations/nodes)

Gilgai (microlrelief basin/knolls) common in clay rich soils

Plinthite (irreversibly hardened) red/yellow, gray, white mottles
- Sesquioxide-rich ironstone hardpan or aggregate

Slickensides (polished/grooved surfaces produced by one soil mass sliding past another)

Diagnostic Contacts to Non-soil Material

Lithic Contact – boundary between soil / continuous coherent materials (rock) that is very hard (>3 moh.)

Paralithic Contact – boundary between soil/continuous coherent (rock) moderately to weakly hard (>3 moh.)

Petroferric Contact – boundary between soil and indurated layer of iron-cemented material.

Dynamic Diagnostic Soil Properties (Moisture & Temperature)
Based on established depths (10-90 cm deep) to which a known amount of water will wet in a certain amount of ‘time’, under certain ‘temperatures’.

6 Moisture Regimes

Aquic (WET) soil is saturated with water for at least enough time so that reducing conditions exist (no gaseous oxygen), which results in ‘gleying/mottling’
- The UP!
 - Artificial drainage is required for growing crops

Aridic / torric (DRY) in most years (6/10) these soils are both dry more than half the growing season/moist for less than 90 consecutive days.
 - Common in Arid Climates

Perudic precipitation exceeds evaporation in every month of the year.
 - Water will move through this soil in all months
 - Harvesting/Curing a crop is difficult!

Udic most years, soil is not dry for 90 consecutive days
- The UP!
 - Soil moisture is sufficiently high in most years for plant growth
 - Common in humid climates

Ustic soils are dry for 90 or more cumulative days
 - Soil moist for at least 90 - 180 cumulative days
 - Dry half the time

Xeric soil is moist in some part more than one half the days, dry for more than 45 consecutive days, moist > 45 consecutive days.
 - Mediterranean / S. California (Dry summers/Moist winters)
 - Most crops grown in the Spring
Soil Temperature Regimes
Each soil has certain temperature characteristics that can be measured over the course of several years.

- Mean annual/mean Summer Temperatures
- Difference between Summer/Winter

Perigelic – mean annual soil temperature < 0°C (Permafrost)

Cryic – mean annual soil temperatures 0°C – 8°C, Summer temperatures < 15°C

Frigid – mean annual soil temperatures 0°C – 8°C, Summer temperatures > 15°C The UP!

Mesic – mean annual soil temperature 8°C – 15°C

Thermic – mean annual soil temperature 15°C – 22°C

Hyperthermic – mean annual soil temperature > 22°C (Tropics)

Iso – (Prefix used with Frigid, Mesic, Thermic, and Hyperthermic to show difference between the mean Summer/Winter temperature less than 5°C)

Soil Taxonomy System
6 Hierarchical Categories, Highest (broadest) to Lowest (specific)
- Order, Suborder, Great Group, Subgroup, Family, and Series
- Versatile & Adaptable
- Since 1975 2 have been added (Andisols & Gelisols)
- New ‘Series’ continue to be added (Wetlands)
- Old ‘Series’ to be reevaluated/tested (Kalkaska Series?)

SOIL ORDERS – (First broadest category based on major soil forming processes.)
- 12 Soil Orders
- Names end with “sols”
- Name starts with ‘Latin names’

Alfisols (alf-nonsense, Marbut’s Pedalfer) major diagnostic subsurface horizon including argillic, natric, and kandic; high to medium base saturation.

Andisols (and-Japanese/blacksoil) from volcanic materials.

Aridisols (id-aridus/dry) dry soils, ochric epipedon, sometimes argillic or natric subsurface horizons.

Entisols (ent-recent) little profile development ochric epipedon is common. (least developed) (MOST COMMON)

Gelisols (el-gelid, very cold) permafrost, often with cryoturbation.
Histosols (ist-histos, tissue) peat/muck > 20% organic matter.
Inceptisols (ept – inceptum/beginning) young soil with few diagnostic features, oehric or umbric epipedons, cambic subsurface horizons.

Mollisols (oll – mollis, soft) mollic epipedon, high base saturation, dark soils, some with argillic or natric subsurface horizons.
Oxisols (ox-oxide) oxic subsurface horizons, highly weathered.
Spodosols (od-spodos, wood ash) spodic subsurface horizon. The UP!
Ultisols (ult-ultimust, last) argillic or kandic horizons, low base saturation.
Vertisols (ert-verto, turn) high in swelling clays, deep cracks.

SUBORDERS
- 2nd level classification (63 suborders)
- Based on soil moisture/temperature/parent material regimes, etc.
- Has 2nd part to the name (Formative Element)

GREATGROUPS
- Subdivisions of suborders based on; (kind, arrangement, and degree of expression of horizon)
- More than 300 Great Groups!
- 3rd part to the soil name

SUBGROUPS
- More than 1,300 subgroups!
- Names used as adjectives (ex: Ty’pic’)

FAMILY
- Subdivisions of subgroups (8,000!)
- Originally intended to be used for major interpretation for growing plants.
- Most based on;
 - Subsoil particle-size/distribution classes (ashy, fragmental, sandy, clayey, etc.)
 - Subsoil mineralogical classes (gypsic, carbonatic, magnesic, etc.)
 - Cation exchange capacity of the clays (superactive, active, semiactive, subactive)
 - Soil temperature regimes
 - Depths

SERIES
- Series are subdivisions of families, and the ‘most specific’ unit of the classification system.
 - Over 19,000 in the US!!!!
 - Names based on geographic place names (nearest town, river, county) where series was first recognized.
 - No specific limiting criteria, often based on; (kind, thickness, arrangement of horizon, color, texture, etc.)
 - Mappable unit in the soil surveys.

Phases
- While not an official category within soil taxonomy, Phases are recognized within a series, denoting slope, surface-texture, or presence of rocks, etc.
- For example;
 - Rubicon Sand, 0 – 6% slopes
 - Witbeck Very Stony Muck, extremely boulder
 - Charlevoix Sandy Loam, 0 – 4% slopes

Soil Water
HYDROLOGIC CYCLE – earth has 1,400 million km3 of water involved in the cycle. (Oceans/Atmosphere)
- ‘Movement’ or in ‘Storage’ (Oceans)
- Surface = runoff or infiltration, interception

Interception occurs when precipitation falls upon vegetation.
- Tree canopies, stems, crop, etc.
- As much as 50% of precipitation can be intercepted
- Thick deciduous forests (less erosion)
- Will then be evaporated
- STEM FLOW – water that reaches the ground, picks up nutrients!
Infiltration – process in which free water (precipitation) enters a soil's surface and fills soil pore spaces, becomes soil water.

- **INFILTRATION RATE** – rate at which water enters the soil.
- **INFILTRATION CAPACITY** – maximum rate water can enter a soil.
- \(I = Q \) (volume of water) \(A \) (soil exposed) \(T \) (time exposed)

Runoff – amount of water arriving at the ground surface exceeds infiltration capacity/rate.

- **SHEET EROSION/FLOW** - Water accumulates in low areas & moves across sloped surface.
 - Factors:
 - **Antecedent Soil Moisture Conditions**
 - Soils are moist, pore space is already filled when next storm hits.
 - **Timing of Precipitation Events**
 - Soil frost, Frozen top soil and Desert Areas make infiltration not possible, More Runoff!
 - PESHEKEE RIVER, Whitewater Rafting Story
 - **Soil Structure**
 - Loose and open structure = more infiltration
 - Platey structures present = infiltration is slow
 - **Soil Textures**
 - Coarser soil (bigger) = more infiltration
 - Finer Soils = smaller infiltration rates
 - **Slope**
 - Steep slopes = less infiltration
 - **Vegetation Cover**
 - Plant cover will cut down water reaching the ground
 - Add surface runoff by adding surface roughness
 - Natural Forests = very low runoff/high infiltration
 - Tall Grass Prairie = low runoff/high infiltration
 - Most Crops = high runoff/low infiltration
 - No Vegetation = highest runoff/lowest infiltration
 - **Landuse**
 - URBAN – paved, roof tops, high runoff, flash flooding
 - LOGGING – compaction, removes vegetation, lessen seasonal restrictions
 - AGRICULTURE – no natural vegetation, more open soil, lessened by use of crop cover, conservation farming techniques.

Percolation & Groundwater Zones

- **Percolation** – water moving “downward” through the soil profile.
 - “PERC TEST” – percolation rate of water entering the soil per. Hour.
 - Spring/Early Summer (important for Septic Tanks/Drain fields)

Groundwater Zones

Septic Systems aside, in natural soils, some of the downward percolating water will eventually be lost due to groundwater drainage or be taken up by plant roots.

- **Vadose** – often unsaturated zone above the water table.
 - May include soil/regolith
 - Critical to plant growth! (evaporation, percolating, etc.)
 - Amount of wetness depends on water present.
 - SATURATION – pore spaces filled with water
 - FIELD CAPACITY – 50% water, 50% air, perfect for plants!
 - WILTING POINT – plants removed from enough water.
 - HYGROSCOPIC COEFFICIENT – water held in soil colloids, plants dead!
Capillary Fringe – water pulled upward from water table during times of low rainfall.
- Life or Death in ‘desert settings’!

Groundwater – zone where the soil/sediment pores are completely saturated.
- Actually flows slowly (downhill, mirrors grounds surface)
- Shallow groundwater (recharged by percolating water from above)
- Deep groundwater (further away recharge sources)
- OGALLALA AQUIFER (Great Plains)

Aquifer – groundwater confined to porous geological deposits (outwash plains)
- Deep groundwater will take form
- Porous sandstone = excellent example
- Circular Irrigation Patterns (Well in the center for crops)

Aquiclude – zone relatively impervious to groundwater flow (Springs)
- Clay layers, Shale, Granite

Water Table – top surface of ground water.

If Removal exceeds Recharge = Water table Drops! (Cities, Farming, Industry)

Salt Intrusion – pulling saltwater from wells (BAD!)

Groundwater Pollution – chemicals/pollution getting into groundwater (agricultural fields, landfills, septic tanks).

Soil Aeration & Wetlands

Soil Aeration – under well-drained conditions, molecular oxygen readily accepts electrons & is a strong oxidizing agent. (Reddish Colors in ‘B Horizon’)
- Under conditions of oxygen deficiency, however, soil microorganisms can use other chemicals (Fe$_3^{+}$ & Mn$_4^{+}$) as electrons acceptors and reduce them to lower valence forms. (Blues/Grey, GLEY colors in Histosols)
- Also influences Microbial Breakdown of organic residues…..
 - Reduces conditions; slows the rate of decay
 - Soil gases affected (CO$_2$ prime product released by oxidation)

Wetlands & Wetland Delineation

Wetlands – areas that are typically ‘poorly drained’, ‘poorly aerated soils’ and specialized ‘hydrophytic vegetation’, together forms a terrestrial ecosystem.
- 14% of the world’s ice free land area (Canada, Alaska, Russia)
- Major environmental issue (drained, removed, and destroyed)
- In the U.S., half have been destroyed! (Converted to cropland / cities (USDA, COE)
- Stringent rules for Preservation!

Wetland Delineation – (Boundaries) much time, $, and effort is spent each year to determine the geographic location and extent of wetlands.
- Boundary between wetlands / Bodies of Water
 - (Rooted emergent plants = wetlands; not deep water)
- Dry side Boundary between wetlands / Dry Land
 - (Most impacts hard to define!)
3 Characteristics: Wetland Hydrology, Hydric Soils, Hydrophytic Plants

1.) Wetland Hydrology

Residence Time – presence of poorly drained settings where water is collected below/above groundwater surface for a period of time.
- Longer = Wetlands
- Weakly developed shorelines may develop in times of high water.
- Variation **hydroperiods** may be daily, seasonal, decades, etc.

2.) Hydric Soils

- Commonly found within the order Histosols, in Aquic suborders and subgroups, and/or in Aquic Soil Moisture Regimes (SMR).
- Defined as soils that are;
 - Subject to periodic saturation
 - Undergo reducing conditions at substantial times of the year
 - Exhibit hydric soil indicators
- Thick dark surface layers, not completely-decomposed
- Redox Depletions
 - Zones where reduction has removed or depleted the iron coating from mineral grains, results in blue/gray (GLEYING)
- Redoximorphic Features
 - Mottled zones, where low chroma reduced areas contrast with reddish oxidized areas of the soil, signals fluctuating water table.
 - Manganese nodules (hard black nodules)
 - Oxidized root zones (reddish castings)

3.) Hydrophytic Plants

- Have evolved specialized mechanisms to live in saturated soils.
- Mechanisms;
 - Arechyma features (allow the plant to send oxygen to roots)
 - Buttress Root bases for support (Common in Cyprus)
 - Shallow root systems, pick up any available oxygen
 - 'Knees' roots that allow them to access atmospheric oxygen (Mangroves)

Soil Mapping & Soil Surveys

Phases;

- **INITIAL PHASE** – learning as much as possible about the study area!
 (Climate, geology, geomorphology, ecology)
- **CREATION of the MAPPING LEGEND** – list of all possibilities that may be encountered while mapping the soils in a given area.
- **SECOND PHASE** – FIELDWORK – a team of soil scientists trained in the making of field profile descriptions and soil mapping is turned loose in the study area.
 - Spatial boundaries are traced…
- **DELINEATION SOIL MAP UNITS/BOUNDARIES** – finding the geographic limits of the soil mapping units in the legend (boundaries)
 - Soil auger, Coring, or Probing (can’t dig soil pits everywhere!)
- **THIRD STAGE** – **SOIL REVIEW/DRAFT MAPS** – Soil mappers will host a gathering of soil mappers and researchers to review the work to date.
- **FOURTH STAGE** – **FINAL MAPS** – trying to create a series of final maps that typically are published in a soil survey.
 - 'Orthophotos' (air photos; distorted & exaggeration takes them out)
- **LINE CORRECTIONS** – before mapping, maps can be completed, must link up in terms of the line segments.
- **SOIL SURVEY DOCUMENT** – prepare a written report that describes the sustainability of each mapping unit for various land uses.
High-Tech Tools for Soil Mapping

Aerial Photographs – used in concert with soil pits & auger holes, most import tools for soil mappers.

- Vertical Images usually taken from an airplane using sophisticated mapping camera that use oversized film.
- 9X9 prints made directly from negatives…..
- Most common *Panchromatic* (all visible light, black & white / cheapest)
- Infrared Images used for Mapping Vegetation.
- Allows Stereographic Viewing (3D), reveal proxy indicators of soil types (Vegetation)

Stereographic Viewing – aerial photographs are often taken as a series of overlapping images.

- Produces a 3D Model which allows you to see topography, trees, etc.!

Proxy Indicators – indirect indicators of the presence of certain features of properties or conditions.

- Learn what surface characteristics indicate
- Red Pines = Sandy textural soils
- Hardwoods = loamy textures
- Forested Wetlands = Histosols / Aquents / Aquods

'LiDAR’ (Light Detection and Ranging)

- Airborne Laser mapping that directly measures the shape of the earth’s surface.
- 1,000 points per. Second!!!! Accurate up to ½ an Inch!!!!!
- Can work through tree canopies (can penetrate underground)
- Help create DEM’s!

GPS (Global Positioning System)

- Helps knowing your exact location while in the field (auger holes)

Satellite Imagery – imagery using electro-optical scanners housed in Satellite platforms.

- Records radiation at band ranges
- Worse than aerial photography, but can take pictures under bad weather conditions!
- Produces ‘MODIS IMAGES’

GPR (Ground Penetrating Radar)

- Sends pulses of energy downward into the ground
- Constructs a cross-section through the soil (non-invasive)

Soil Surveys are “a systematic examination, description, classification, and mapping of the soils in a given area.”

Joint efforts (National Cooperative Soil Survey) & (USDA Natural Resources Conservation Service), and other Federal Agencies.

Different levels of detail dependent of scale (detail), and person mapping.

RECONNAISSANCE LEVEL – (5th Order Survey): Satellite Mapping

Mapping Units (Legend)

- **Phase** – subdivisions of a series that is based on some important characteristics that influence the use of soil. (Slope, Texture, Erosion, Stoniness)

- **Consociations** – micro-variations in soil forming factors, will include ‘inclusions’ of similar soils and ‘contrasting’ soils…..

- Consists 50% of a single phase, and the other 50% similar soils!

- <15% soil inclusions (wetlands, outcrops)

- **Soil Complex** – ‘2 or 3 contrasting soils’ in an intermingled pattern, so complex that soils can’t be exactly separated while mapping.

 (Example: KEWEENAW – KALASKA COMPLEX, 1-12% Slope, Dissected)

- **Soil Association** – a grouping of soils that typically occur together on the landscape, but could be mapped separately. Used in 3rd Order Surveys or ‘General Soil Maps’ (BROAD!)

- **Undifferentiated Group** – 2 or more soils that could be mapped separately, but are mapped as one unit because similar interpretations can be made for use & management. Lacks the word “Complex”

 (Example: GREENWOOD and DAWSON SOILS/MUCK)
Major Parts

1. General Soil Mapping – typically a 4th order soil map of the county printed in color, etc.
2. Detailed Map Sheets – 2nd order soil maps consisting of individual sheets. (1:24,000)
 orthophotos keyed to an index map.
3. Interpretive Information – report portion of the survey (descriptions)
 -GIS is how it is now packaged (Web-Based WSS)

SOIL GEOGRAPHY
Looking at Location, Distribution, and Pattern of occurrence of various kinds of soil.
MOST in the WORLD = ENTISOLS (16.3%, degraded)
MOST in the US = MOLLISOLS (22.4%, greatest agriculture soil)

ALFISOLS – (high base status soils with Argillic Horizons)
- Well developed ‘B Horizon’, Argillic
- Fairly Fertile
- Forests develop = O, A, E, and B Horizons
- 10% of the Earth’s ice free surface (Older Landscapes)
- Broadleaf Deciduous Forests (North America, China, Europe)
- Grass/Broadleaf Forests (Africa, South America, California)
- Broadleaf/Evergreen Trees (Africa, Australia)
- PODZOLIZATION – leaching (Clay rich B Horizon)
- Uses: Crops, Hayland, Pasture, Range, and Forests

ANDISOLS – (soils with andic soil properties; Volcanic)
- Ash, Pumice, Cinders (Adopted 11th Soil Order in 1989)
- Less than 1% of Earth’s ice free area
- Iceland, Pacific Ring of Fire, Rift Valley, Africa, Europe, U.S. Northwest
- Steep Slopes / High Elevations
- Old! (Holocene & before)
- Uses: High Elevation Forests, Steep Slopes limit Farming, Timber harvesting, Farming (Japan, Hawaii, South America)
ARIDISOLS – (soils of Dry Regions)
- Dry more than 90 consecutive days a year!
- Ochric A Horizons, Calcic B Horizons
- Found in cool temperature deserts & warm subtropical deserts
- Covers 12% of the Earth’s ice free area
- Northern Africa, Middle East, Central Australia, Patagonia, U.S. Southwest
- Old! (Up to 1 million years old!)
- Crusts (cemented surface)
- Pavements (sand blasted surface)
 VEUTIFACTS
- Uses: Surprisingly fertile (but lack water), Range, BLM Land
- **SALINIZATION** – leaves salt after irrigation!

ENTISOLS
- Little or no evidence of development of Pedogenic Horizons
- Horizons are lacking, but plant growth is evident, unconsolidated
 Parent Materials are functioning as soils.
- Only Ochric A Horizons, Sometimes Albic E Horizons, and overlying C Horizons
- 16% of Earth’s ice free surface (GROWING) **LARGEST!**
- Young land surfaces (fresh deposits)
 - Very slow (too cold, dry, or wet)
 - Continually being disturbed (hill slopes, human related)
 - Being disrupted by continual deposition (active Eolian landscapes)
 - Difficult, exceptional resistance of Parent Material to weathering
 - Africa, Middle East, U.S. Southwest, Central Australia
- **MELANIZATION** – adding organics, darkening, making an A Horizon
- Uses: Erosion by water/wind/mass wasting make steep hilly slopes;
 Engineering problems, Flooding Hazards, Some use for Range, Delta Farming.
GELISOLS
- Contains Permafrost (continuously below 0°C) within 100 cm or 200 cm of surface.
- If CRYOTURBATION (soil disturbance/frost) is found within 100 cm of surface.
- Patterned Ground (ice wedged polygons & stone nets)
- Found in the Northern Hemisphere, Antarctica, and High Elevations
- 8.6% of land (DROPPING)
- Can be fairly Old
- Soil Genesis: gains, losses, transformations, and translocations
 - Organic Material is ‘Very Slow’!
 - Scott’s South Pole (1910-13), Horse Manure still there!
 - Some areas greater, higher sunlight (near Oceans)
- Uses: Fragile! (impacts stay for a long time!), Dust accumulations may heat up quicker & melt gelisols, Mining & Petroleum extract resources, reacting to Global Warming! (Histosols).

HISTOSOLS (Organic Soils)
- Commonly Saturated
- Typically profiles consist of thick O Horizons, Overlying C Horizons
- Peats/Muck (water is restricted due to flow)
- Canada, Scandinavia, Russia, Eastern UP!
- Holocene in age
- 1% of Earth’s ice free land area
- Organic accumulations, Redox features, Redoximorphic features…
- Uses: Produce Crops, Forested Wetlands, Wildlife, Recreation Activities
 - Mined for Potting materials (Russian & Britain)
 - Many areas drained; Organic material oxidation (Fire!)
 - Florida (Histosols down 3 cm a year!)
INCEPTISOLS (Embryonic Soils / Few Diagnostic Features)
- *Wastebasket Soil*; Ochric epipedons / Albic horizons in Entisols
- In equilibrium unless a change (Mixture of the above)
- Steeply Sloping (Not in Arid Areas!), Cooler temperature zones, Valley delta deposits (River Terraces).
- 10% of the Earth’s ice free surface
- Europe, Alaska, China, U.S. Appalachians
- Leaching (Humid Environments), No one process happening!
- Uses: Productive agriculture (rice = river terraces), Woodland, Pasture, Recreation, Wildlife, Pasture

MOLLISOLS (Grassland Soils of Steppes & Prairies)
- Dark, Fertile, Grassland Vegetation (Thick A Horizon)
- Lowland Hardwood, well drained Forest Soils
- Short-Grass Steppe & Tall Grass Prairie
- U.S. Great Plains, Argentina, Central Asia, Ukraine, Russia, Mongolia
 - PRODUCTIVE! (Has caused Conflict!)
- 7% of the Earth’s ice free surface
 - **Melanization** – darkening of the soil by additions & decomposition of organic matter, dominant pedogenic process.
 - Allows grass roots to go into soil.
- Eluviation & Illuviation
- Uses: Food Production (Highly Productive) (Erosion = Farming!)
 - Wheat, Corn, Beans, Beets
 - Rangeland (Western U.S.)
 - Not much natural vegetation (Still in Mongolia)
OXISOLS (Low-Activity Soils; MASSIVE ‘B HORIZON’)
- Mineral soils with an oxic horizon within 1.5 meters of the surface
- Surface exceeds 40% clay (Kandic Horizon)
- Most contain less than 10% weatherable material
- Most weatherable soil type!
- 7.5% of Earth’s ice free land area. (Inter-Tropical Region)
- Central Brazilian Plateau & Congo
- On Highly weathered transported material
- Stable ‘Upland’ Summit Positions
- Very Ancient (Millions of years old!!)
- Tropical Rainforest, Semi-Deciduous, Savana
- Secondary iron oxide / well drained (cemented hard!)
- MELANIZATION / HUMIFICATION
- Rapid Decomposition!!!!
- Disturbed by animals readily
- Uses: Cultivation / Grazing (Indigenous People)
 - Sugarcane, Pineapple, Bananas, and Coffee

SPODOSOLS (Subsoil Accumulations of Humus/Sesquioxides)
- Contains Spodic Horizon, Illuvial accumulations of Organic Matter with aluminum, with or without iron.
- Typical O Horizon, Thin A Horizon, Heavily leached E Horizon!
- 2.5% of Earth’s ice free area
 - The UP!
- Found in Humid Boreal zones, Needleleaf Trees (Acidic)
- Northern Great Lakes, Southern Canada, Russia, Scandinavia, Even Florida!
- Course textured parent material (sand)
- PODZOLIZATION – forestry, pasture, hay, some cultivated crops
 - Potatoes, ‘Blueberries’, Rutabaga, Red Clover, Oats
ULTISOLS (Low Base Status Soils)
- Saturation <35% at 2 meter depth
- Typical O, A, and well developed Bt Horizons!
- Fragipans
- Hilly developed ‘Alfisol’
- Highly weathered (just under oxisols)
- Found generally on old landscapes (Not Glacial Terrain!)
 - Humid, Subtropical, Savanna
- 9% of Earth’s ice free area
- Southeast Asia, Eastern Australia, Southeast U.S., East Africa, South Brazil
 - PODZOLIZATION dominates (leeched; Old!)
- Clay accumulation (LESIVAGE) Well developed B Horizon
- Uses: Terracing (needs fertilization) Abandoned Farms
 - Agriculture & Timber

VERTISOLS (Shrinking & Swelling Dark Clay Soils)
- Highly expanding clay, Deep wide Cracks!
- Shrinking when drying, Swell when wet
- Australia, Deccan Plateau (India), Sudan, Egypt, Chad, Puerto Rico, Taiwan
- U.S. in the Mississippi Valley, Texas
- 2% of Earth’s ice free area
- Uses: Agriculture, Range

U.S. Soil Geography
MOLLISOLS – Great Plains
ULTISOLS – Southeast
ALFISOLS – Midwest
ARIDISOLS – Southwest
SPODOSOLS – Northeast, Great Lakes, Florida
ENTISOLS – West
INCEPTISOLS – Appalachians
ANDISOLS – Pacific Northwest
GELISOLS – Alaska
Michigan Soil Geography
ALFISOLS – Southern Half of the LP (Farming)
- Climate = Dfa (cold winters, hot summers)
- Vegetation = Deciduous Forest
SPODOSOLS – Northern LP & the UP (Forested)
- Climate = Dfb (cold winters, warm summers)
- Vegetation = Mixed Forest
ENTISOLS – Formed dunes, beach ridges, young river deposits
HISTOSOLS – Suprists, former wetlands, (Delta & Menominee Co.’s)
INCEPTISOLS – Drained former glacial lakes
MOLLISOLS – Southern LP, wet plains, coastal grasses

Soil Archaeology
Archaeology – the study of part human behavior.
- Study of artifacts, refuse, and other features left behind.
- Geoarchaeology – using geosciences to answer archaeological questions.

On Site;
- Stratigraphy – soils represent times of surface stability and are often found in buried context within stratified archaeological sites. (i.e. – Paleosoils)
- Dating – developing indices allow establishment of surface ages, giving maximum possible age of archaeological material (i.e. – Soil Artifacts Context Model using the POD Index)

-Paleoenvironmental Reconstruction – certain soil types correlate closely with particular environmental conditions, allowing their use as proxy indicators of climate, drainage, vegetation cover, etc.

SOILS MODIFIED BY HUMANS
Through: Compaction, Digging, Planting, Additions
- Leave traces in the soil profile = features

Hearth – (firepit) common prehistoric campsites & villages.
- Material of fire breakup into soil and ash stains in the sand.

Pits – excavated by prehistoric people for disposal of refuse, caching food, or other purposes.
- Up to 100 cm. below the surface.

Post Mold – (holes) created when wood posts are into the ground.

Soil – Artifact Context Model (Anderton, 1999)
- Method for providing a relative age established for archaeological sites that have no diagnostic artifacts/datable carbon.
- Need to examine the relationship between soil horizons/artifacts and features;
- Artifacts/Features that cut across soil horizons - (Artifact = Postdates; Younger)
- Artifacts/Features that are cut across by soil horizons – (Artifacts = Older!)

ARCHAEOLOGICAL (Site Prospecting)
- Information is collected; (Remote Sensing, Research, Geoarchaeological Applications)
- Look for marks (Shadow Marks, Soil Marks, Positive Crop Marks, Negative Crop Marks)