WHERE DOES NOMINAL GRADABILITY COME FROM?
MISGIVINGS, SECOND THOUGHTS, REGrets, AND THE HOPE OF REDEMPTION

Marcin Morzycki
Michigan State University

University of Massachusetts
May 8, 2014
Something we think we understand (Kennedy & McNally 2005, Rotstein & Winter 2001, others):

(1) a. rather \(\left\{\begin{array}{l}
\text{transparent} \\
\text{straight} \\
\text{long}
\end{array}\right.\)

b. perfectly \(\left\{\begin{array}{l}
\text{transparent} \\
\text{straight} \\
\#\text{long}
\end{array}\right.\)

c. partly \(\left\{\begin{array}{l}
\#\text{transparent} \\
\#\text{straight} \\
\#\text{long}
\end{array}\right.\)
Something we don’t really understand:

(2)

a. real
\[
\begin{cases}
\text{idiot} \\
\text{smoker} \\
\text{sportscar}
\end{cases}
\]

b. big
\[
\begin{cases}
\text{idiot} \\
\text{smoker} \\
\#\text{sportscar}
\end{cases}
\]

c. utter
\[
\begin{cases}
\text{idiot} \\
\#\text{smoker} \\
\#\text{sportscar}
\end{cases}
\]

(#indicates ill-formedness on a degree reading)
Big-picture questions:

- How does nominal gradability come about?
- What makes certain nouns more easily gradable than others?
- How do nouns differ from adjectives with respect to gradability?
- What does this reveal about gradability in general?
Guiding ideas:

- Nouns are only indirectly gradable.
- Nouns lack a degree argument, but ...
- ... some are nevertheless associated with scales.
- A major axis of variation among degree-modified nouns: how a scale is retrieved from a noun meaning.
Roadmap

- Adnominal degree morphemes
- Prototypicality modifiers
- Dimensions and dimensional modifiers
- Conclusion
The modifiers in (3) are not actually (ordinary) adjectives (Morzycki 2009, de Vries 2010, Xie 2010; cf. Constantinescu 2011):

\[
\begin{align*}
\text{true} & \quad \text{real} \\
\text{real} & \quad \text{slight} \\
\text{total} & \quad \text{utter} \\
\text{utter} & \quad \text{absolute} \\
\text{absolute} & \quad \text{outright} \\
\end{align*}
\]

\[
\begin{align*}
\text{disaster} & \quad \text{idiot} \\
\text{idiot} & \quad \text{magic} \\
\text{magic} & \quad \text{bullshit} \\
\end{align*}
\]
The size adjectives in (4) *are* regular adjectives, but doing something special:

\[
\begin{align*}
&\text{big} \\
&\text{huge} \\
&\text{colossal} \\
&\text{humungous} \\
&\text{idiot} \\
&\text{small} \\
&\text{little} \\
&\text{diminutive}
\end{align*}
\]
Adnominal degree morphemes: Not ordinary adjectives

Not the same meaning as homophonous adjectives:

- *true bullshit* would, on the usual meaning of *true*, be contradictory
- *true disaster* vs. *untrue disaster*
- *total idiot* but not *partial idiot*
- some don’t even have adjectival homophones: *utter, downright, out-and-out, straight-up, outright*
No predicative use:

\[
\text{That} \left\{ \begin{array}{l}
\text{disaster} \\
\text{idiot} \\
\text{magic} \\
\text{bullshit}
\end{array} \right\} \text{ is } \left\{ \begin{array}{l}
\text{true} \\
\text{real} \\
\text{utter} \\
\text{absolute} \\
\text{outright}
\end{array} \right\} .
\]

Even worse with \textit{seem}, a classic diagnostic of adjective-hood:

\[
\text{That} \left\{ \begin{array}{l}
\text{disaster} \\
\text{idiot} \\
\text{magic} \\
\text{bullshit}
\end{array} \right\} \text{ seems } \left\{ \begin{array}{l}
\text{true} \\
\text{real} \\
\text{utter} \\
\text{absolute} \\
\text{outright}
\end{array} \right\} .
\]
Can’t support their own degree modification:

\[(7) \quad \#\text{some} \quad \begin{aligned}
&\text{absolutely true} \\
&\text{completely real}
\end{aligned} \quad \begin{aligned}
&\text{disaster} \\
&\text{idiot}
\end{aligned} \\
\begin{aligned}
&\text{very utter} \\
&\text{quite absolute}
\end{aligned} \quad \begin{aligned}
&\text{magic} \\
&\text{bullshit}
\end{aligned} \\
\begin{aligned}
&\text{fully outright}
\end{aligned} \]
Broadly similar facts in other languages (examples welcome!).

Japanese:

(8) \[\{ \text{mattaku-no utter} \} \quad \{ \text{kanzen-na absolute} \quad \{ \text{kanpeki-na outright} \} \quad \text{baka idiot} \]
Japanese counterparts also lack a predicative use:

(9) #Ano-baka-wa that idiot \(\{\text{mattaku utter} \atop \text{kanzen absolute}} \atop \text{kanpeki outright}\} \text{-da} .

‘That idiot is utter/absolute/outright.’
Japanese counterparts also can’t support their own degree modification:

(10) \#

\[
\begin{align*}
\text{tometo} & \quad \text{mattaku-no} \\
\text{very} & \quad \text{utter} \\
\text{kanari} & \quad \text{kanzen-na} \\
\text{pretty} & \quad \text{absolute} \\
\text{motto} & \quad \text{kanpeki-na} \\
\text{more} & \quad \text{outright} \\
baka & \\
\text{idiot}
\end{align*}
\]
Adnominal degree words often have ad-adjectival cognates:

(11)
 a. true ~ truly
 b. real ~ really
 c. utter ~ utterly
 d. slight ~ slightly
 e. absolute ~ absolutely
 f. outright ~ outright (e.g., outright dead)
 g. flat-out ~ flat-out (e.g., flat-out dead)
 h. downright ~ downright (e.g., downright dead)
Adnominal degree morphemes:

Summary

Adnominal modifiers (at least the ones at issue here):

- syntactically & semantically distinct from ordinary adjectives
- analogous to degree morphemes in AP such as more, very, less, really
Roadmap

- Adnominal degree morphemes
- Prototypicality modifiers
- Dimensions and dimensional modifiers
- Conclusion
Nouns support more structurally complicated degree constructions too:

(12) a. Clyde is more phonologist than phonetician.
 b. Clyde is more of an idiot than Floyd.

(13) a. Clyde is a bigger idiot than Floyd.
 b. Clyde is as big an idiot as Floyd.
Reasons to think nouns have a degree argument:

- Nouns have specialized degree words.
- Nouns support comparatives and equatives.
- Gradability is crosscategorial (Sapir 1944, Bolinger 1972, Abney 1987, Doetjes 1997, others).

Slap on a degree argument and go home?
But nouns aren’t *as* gradable as adjectives.

If they both had degree arguments, what’s the difference?
Project from here on: degree morphemes in the absence of degree arguments.

Real and *true* occur relatively freely (see also Constantinescu 2011):

\[
\begin{align*}
\{ \text{real} \} & \begin{cases} \text{disaster} \\
\text{idiot} \\
\text{smoker} \\
\text{basketball fan} \\
\text{American} \\
\text{sportscar} \end{cases} \\
\{ \text{true} \}
\end{align*}
\]

(14)

Similar freedom in Japanese (*hontoo-no* ‘real’).
Analytical intuition: *real* and *true* use scales of prototypicality. A *real idiot* is an especially prototypical one.

Prototypicality is a bit slippery. Predictions?

NPs with no prototypes (Kamp & Partee 1995) should be odd with *real*:

\[(15) \quad \text{Floyd is a} \begin{cases} \text{real} \\ \text{true} \end{cases} \begin{cases} \text{??male nurse} \\ \#\text{non-Methodist} \\ \#\text{resident} \end{cases}. \]
Possibly related to contrastive focus reduplication (Ghomeshi et al. 2004):

(16) I’ll make the fruit salad, and you make the SALAD-salad.

They explicitly appeal to prototypicality.

(Is it possible to test this for nouns without prototypes?)
Possibly related to Japanese *rashii* (McCready & Ogata 2007):

(17) onna rashii onna
 woman RASHII woman
 ‘feminine woman’

M&O call this a ‘stereotypical adjective’ which requires ‘exemplify[ing] the properties ordinarily associated’ with an individual.
Perhaps even related to *-ish* and *-like*:

(18) a. I read something novel-*{ish like}*.

b. That bird was pigeon-*{ish like}*.
Prototypicality modifiers:

Sketch of an analysis

Real sportscar (roughly): ‘very similar to the prototypical sportscar’.

Ingredients:

- **prototype** maps a noun denotation to its prototype
- **similar[^c]** maps an individual and a prototype to the (maximal) degree of their similarity (in \(c \))
- **standard[^c](N)** = the degree of similarity to a prototype sufficient to count as a member of extension of \(N \) (in \(c \))
- \(>>[^c] \) is a vague ‘considerably exceeds’ relation
Real requires exceeding the standard considerably (like *very*):

\[(19)\]

a. \[\text{[real]}^c = \lambda f \lambda x . \text{similar}_c(x, \text{prototype}(f)) \gg_c \text{standard}_c(f) \]

b. \[\text{[real sportscar]}^c = \lambda x . \text{similar}_c(x, \text{prototype(sportscar)}) \gg_c \text{standard}_c(sportscar) \]
Unmodified noun:

(20) \[\text{the sportscar} \] = \iota x [\text{sportscar}(x)]

Assuming (21):

(21) \text{sportscar}(x) \iff \text{similar}_c(x, \text{prototype(sportscar)}) > \text{standard}_c(\text{sportscar})
These are doubly ruled out:

(22) a. #That sportscar is real.
 b. #a very real sportscar

Wrong category, wrong type.
Contrast with *more of a*, which is also relatively free:

\[(23) \quad \text{a. This is more of a } \{ \text{disaster, idiot, smoker, basketball fan, American sportscar} \}. \]

\[\text{b. Floyd is more of a } \{ \text{male nurse, non-Methodist, resident} \} \text{ than Clyde.} \]

Suggests that *more of a* not about prototypes.
Is the notion of a prototypical idiot appropriate or even coherent?

A *real sportscar* may actually be quite atypical. Likewise for *real idiot*. Is this a problem?
De Vries (2010): most gradable nouns have upper-open scales.

Intuitively, no upper bound on e.g. idiocy. More important:

(24) a. This glass is more full than that one. **entails**: That one isn’t full.

 b. Floyd is more of an idiot than Clyde. **doesn’t entail**: Clyde isn’t an idiot.

Any scale based on proximity to a prototype should be upper-closed.
Same issue:

- Suppose George is the prototypical idiot.
- Now take away a few brain cells. Was this actually the prototype all along?
- Keep going. Now he’s dead. Is this the prototype?
The desiderata: to explain...

- atypical *real sportscar*
- *real idiot*
- oddness in e.g. *real non-Methodist*
- perhaps, why *more of a* isn’t sensitive to prototypes but nevertheless similarly promiscuous
- relation to the non-fake reading?
De Vries (2010): any scale based on proximity to a prototype should be upper-closed. We need to talk about better or worse *exemplars*, not prototypes.

So:

- *real sportscar*: a good exemplar of a sportscar

- *real idiot*: a good exemplar of an idiot

Straightforward to implement.
What about *real sportscars* and *real idiots* being unusual?

- prototypical exemplars of a category aren’t *typical*
- the prototypical triangle presumably exist in the real world
- similar reasoning should go through for exemplars
Worry:

- People find 2 and 4 better exemplars of even numbers than 34 and 806 (Armstrong et al. 1983, cited by de Vries).
- Does that make 2 and 4 *true even numbers*?
(25) **Floyd:** Name an even number.

Clyde: 806.

Floyd: No, a \{ real, true \} even number, like 2 or 4!
An alternative approach:

- appeal to some notion of normality or stereotypical ways things might be
- an intensional approach
- advocated by Constantinescu (2011)
- indirectly, crucial component in McCready & Ogata (2007)
McCready & Ogata (2007), for Japanese *rashii*:

- requires that an individual have more of the stereotypical properties associated with a noun: a *rashii woman* is a stereotypical one
- conditionals of epistemic normality: what is taken to be normal given background knowledge
- $p > q$ iff, whenever p, the normal thing would be p
- maybe one could frame this using an epistemic modal base and a stereotypical ordering source?
the set of stereotypical properties:

$$\text{stereotypical(woman)} = \left\{ P : \begin{array}{c} \forall x [\text{woman}(x) > P(x)] \land \\
\neg \forall x [\text{woman}(x) \rightarrow P(x)] \end{array} \right\}$$

rasshi simply says there are lots of these (literally counts them):

$$[\text{rasshi woman}] = \lambda x : \text{woman}(x).$$

$$|\text{stereotypical(woman)}| > \text{standard}_c(\text{many})$$
Nice feature of this: no need for prototypes:

- a prototype is simply the most stereotypical individual
- nothing requires that there be one

Applying this to real idiot:

\[
(26) \quad \mathbb{L} [\text{rasshi idiot}] = \lambda x : \text{idiot}(x) \cdot \mid \text{stereotypical(idiot)} \mid > \text{standard}_c(\text{many})
\]
But is a *real idiot* actually the most stereotypical idiot or even the best exemplar of idiocy?

Yet another option: *a real idiot* is someone who is an idiot in worlds in which the standards of idiocy are especially stringent.
Roadmap

- Adnominal degree morphemes
- Prototypicality modifiers
 - Dimensions and dimensional modifiers
 - Conclusion
Degree readings of size adjectives and *major* more restricted:

\[
\{ \text{big, huge, major} \} \subseteq \{ \text{disaster, idiot, smoker, basketball fan, #American, #sportscar} \}.
\]

The idea: no degree argument, but certain nouns *are* inherently conceptually associated with scales.
Similar move necessary to reflect polysemy in adjectives:

(28) a. The US is bigger than Canada. \(\text{(population)}\)
b. Canada is bigger than the US. \(\text{(area)}\)

Big's lexical entry must make available multiple dimensions:

(29) \(\text{dimensions(big)} = \{\text{size-by-population, size-by-area, \ldots}\}\)
To be big, it is sufficient to exceed the standard on just one dimension.

Sassoon (2007b, 2013): this depends on the adjective. *Healthy* requires all dimensions, *sick* only one.
Standard assumption about simple adjectives: an unpronounced degree morpheme POS (Cresswell 1976, von Stechow 1984, Kennedy 1997, and many others). Possible implementation:

\[(30) \quad \lceil \text{POS} \rceil^c = \lambda g \lambda x . \exists D \left[D \in \text{dimensions}(g) \land \mu(D)(x) \geq \text{standard}_c(D) \right] \]

... where \(\mu(D) \) is the measure function (\(\langle e, d \rangle \)) associated with the dimension \(D \).

\[(31) \quad \lceil \text{Canada is POS big} \rceil^c = \exists D \left[D \in \text{dimensions}(\text{big}) \land \mu(D)(x) \geq \text{standard}_c(D) \right] \]
Dimensions and Dimensional Modifiers:

Nouns and Dimensions

Nouns may specify dimensions too:

(32)

a. \(\text{dimensions(basketball-fan)} = \)
\[
\begin{align*}
\text{attention-devoted-to-basketball, } \\
\text{enthusiasm-for-basketball, } \\
\text{knowledge-about-basketball, } \\
\text{frequent-attendance,}
\end{align*}
\]

\[\vdots\]

b. \(\text{dimensions(smoker)} = \)
\[
\begin{align*}
\text{frequency-of-smoking, } \\
\text{enthusiasm-for-smoking}
\end{align*}
\]

\[\vdots\]
For *chair*, though, it would be hard to articulate dimensions. No salient gradable quality is sufficient to be a chair.

So, `dimensions(chair)` is undefined.
On its degree reading, *big* requires that the measure of an individual along a lexically-determined dimension be large (treating *big* as a degree head, even though it isn’t one):

\[(33)\]

a. \[[\text{big}_{\text{Deg}_N}]^c = \lambda f \lambda x . \exists D \left[D \in \text{dimensions}(f) \land \text{large}_c(\mu(D)(x)) \right] \]

b. \[[\text{Clyde is a big}_{\text{Deg}_N} \text{ smoker}]^c = \exists D \left[D \in \text{dimensions(\text{smoker})} \land \text{large}_c(\mu(D)(\text{Clyde})) \right] \]

NB: Still no degree argument for nouns: \[[\text{smoker}] \text{ is } \langle e, t \rangle ; \]
\[[\text{big}_{\text{Deg}_N}] \text{ is } \langle et, et \rangle . \]
How does this ensure that (34a) entails (34b)?

(34)
 a. Clyde is a big\textsubscript{Deg\textsubscript{N}} smoker.

 b. Clyde is an smoker.

It doesn’t. Could add requirement of exceeding standard by a large amount:

(35)
\[[\text{Clyde is a big}_{\text{Deg}_N} \text{ smoker}]^c = \exists D \left[D \in \text{dimensions(smoker)} \land \right. \]
\[\left. \text{large}_c(\mu(D)(\text{Clyde}) - \text{standard}_c(D)) \right] \]
...but, a more interesting hypothesis:

(36) On their degree readings, nouns have minimal standards.
As with chair, dimensions(sportscar) not defined. Rules out \(\#\text{big}_{\text{Deg}_N}\) sportscar:

\[
(37) \quad \left[\# \text{This is a big}_{\text{Deg}_N} \text{ sportscar} \right]^c = \exists D \left[D \in \text{dimensions(sportscar)} \land \right. \\
\left. \text{large}_c(\mu(D)(\text{this})) \right]
\]
Dimensions and Dimensional Modifiers:

Unidimensional Modifiers

More restricted still:

\[
\begin{align*}
\text{utter} & \quad \text{disaster} \\
\text{complete} & \quad \text{idiot} \\
\text{total} & \quad \#\text{smoker} \\
\text{absolute} & \quad \#\text{basketball fan} \\
\text{outright} & \quad \#\text{American} \\
\text{flat-out} & \quad \#\text{sportscar}
\end{align*}
\]

(38)

Similar facts in Japanese. Elsewhere? (Examples welcome.)
What’s special about e.g. *disaster* and *idiot*?

- Being a basketball fan is complicated.
- Being an idiot is simple.
Some nouns specify only one dimension:

(39) a. $\text{dimensions(idiot)} = \{\text{idiocy}\}$
 b. $\text{dimensions(disaster)} = \{\text{disastrousness}\}$
Utter presupposes that its noun is unidimensional:

(40) a. $\left[\text{utter} \right]^c$

 $= \lambda f \lambda x . \text{large}_c(\mu(\nu D[D \in \text{dimensions}(f)])(x))$

b. $\left[\text{Clyde is an utter idiot} \right]^c$

 $= \text{large}_c(\mu(\nu D[D \in \text{dimensions(idiot)]}))(\text{Clyde})$

 $= \text{large}_c(\mu(\text{idiocy})(\text{Clyde}))$

Requires that the measure of Clyde along the idiocy scale be large.
What goes wrong in \#utter smoker?

- failure of presupposition
- there are multiple dimensions specified by smoker
- so $\nu D[D \in \text{dimensions(smoker)}]$ is undefined
What goes wrong in \#utter\ sportscar?

- same as in \#big\ sportscar
- failure of presupposition
- there are no dimensions specified by \textit{sportscar}
- so \texttt{dimensions(sportscar)} is undefined
Is it plausible to say that *basketball fan* has multiple dimensions but *sportscar* has none?

This could be simply a lexical stipulation, but it’d be nice to do better.
Sassoon (2007b, 2013):

(41) a. Floyd is healthy except for his high blood pressure.
 b. Floyd is not sick except for his high blood pressure.

(42) a. #Tweety is a bird except for the gills.
 b. #Tweety isn’t a bird except for the feathers.

This might be evidence that *bird* is non-dimensional (contra Sassoon).
We should find a contrast with multidimensional nouns. Maybe?

(43) a. Floyd isn’t a smoker except for the occasional cigar.
 b. Floyd isn’t a basketball fan except for his constant betting on games.
Why do so many unidimensional nouns seem suspiciously emotively loaded?

Maybe this isn’t about dimensions but about *expressive meaning*?

(44) Clyde saw a fucking goat.

suggests: speaker is agitated
Typical expressive:

(45) Clyde didn’t see a fucking goat.
{suggests: speaker is agitated}

Compare to:

(46) Clyde didn’t see a(n) \{ idiot, disaster, genius \}.
{doesn’t suggest: speaker is agitated}
Maybe this isn’t about dimensions or expressive meaning but *extremeness*?

A class of cross-categorial degree modifiers that occur with ‘extreme’ predicates (Morzycki 2012):

\[
\begin{align*}
\text{outright} & \quad \text{huge/\#big} \\
\text{flat-out} & \quad \text{fantastic/\#OK} \\
\text{straight-up} & \quad \text{excessive/\#appropriate} \\
\text{out-and-out} & \\
\text{downright} &
\end{align*}
\]

(47)

Are unidimensional degree modifiers actually just extreme? Would explain *\#utter heap*.
Adnominal degree morphemes
Prototypicality modifiers
Dimensions and dimensional modifiers

Conclusion
This motivated a three-way distinction among nouns:

- nondimensional: *sportscar*
- multidimensional: *smoker*
- unidimensional: *idiot*

Any evidence for this outside of degree modifiers?
Exclamatives (Ai Taniguchi, p.c.):

\[(48)\]

a. What a(n) \[\begin{cases} \text{idiot} \\ \text{smoker} \\ \text{doctor} \end{cases}\] !

b. Boy, is she a(n) \[\begin{cases} \text{idiot} \\ \#?\text{smoker} \\ \#?\text{doctor} \end{cases}\] !

c. Isn’t she a(n) \[\begin{cases} \text{idiot} \\ \#?\text{smoker} \\ \#?\text{doctor} \end{cases}\] ?!
Bigger picture:

- nouns support varied array of degree modifiers
- only indirectly gradable
- some adnominal degree modifiers involve something like prototypicality (*real, true*)
- others involve scales provided lexically but indirectly by the noun
 - some presuppose a single scale (*utter, complete*)
 - others don’t (*big, huge, major*)
major axis of variation among adnominal degree modifiers: how they extract a scale from noun

yields a typology of nouns: nondimensional, multidimensional, unidimensional

So... where does all this leave adjectives?
Thanks!

Other people that warrant thanking (wrt various incarnations of this): Adam Gobeski, Ai Matsui Kobuta, Ai Taniguchi, Alex Clarke, Amy Rose Deal, Chris Potts, Curt Anderson, Eric Acton, Ezra Keshet, Gabriel Roisenberg-Rodrigues, Graham Katz, Jan Anderssen, Jessica Rett, Karl DeVries, Larry Horn, Line Mikkelsen, Lisa Levinson, Nick Fleisher, Olga Eremina, Paul Postal, Phil Pellino, Rich Thomason, Ruth Kramer, and audiences at Georgetown, Wayne State, Stanford, and WCCFL.
For adjectives, scale structure is crucial. How far would that have gotten us here?

- nothing here to suggest that scale structure isn’t important for nouns too
- probably not relevant to presence or absence of a degree argument
- probably not relevant to real/true
- what about big vs utter?
Is this really all about scale structure?

Utterly may require upper-closed scales:

\[
\begin{align*}
(49) & \quad \{ \text{utterly} \} \quad \{ \text{impossible}/\#\text{possible} \} \\
& \quad \{ \text{completely} \} \quad \{ \text{closed}/\#\text{open} \} \\
& \quad \{ \text{absolutely} \} \quad \{ \text{full}/\#\text{empty} \}
\end{align*}
\]

Nominalizations:

\[
\begin{align*}
(50) & \quad \{ \text{utter} \} \quad \{ \text{impossibility}/\#\text{possibility} \} \\
& \quad \{ \text{complete} \} \quad \{ \text{closure}/\#\text{openness} \} \\
& \quad \{ \text{absolute} \} \quad \{ \text{transparency/opacity} \} \\
& \quad \{ \text{fullness/emptiness} \}
\end{align*}
\]
But:

(51) a. \[
\begin{align*}
\text{utter} & \{ \text{idiot} \} \\
\text{complete} & \{ \text{disaster} \} \\
\text{absolute} & \\
\end{align*}
\]

b. \[
\begin{align*}
\text{utterly} & \{ \text{idiotic} \} \\
\text{completely} & \{ \text{disastrous} \} \\
\text{absolutely} & \\
\end{align*}
\]

So: scale structure remains important, but probably not an account of the contrast.
References

Rotstein, Carmen & Yoad Winter. 2001. ‘Partial adjectives vs. total adjectives: Scale structure and higher-order modification’. In *Proceedings of the Amsterdam Colloquium*.

