1

CLAIM: A bijective map between manifolds is not necessarily a diffeomorphism.

Consider the example \(f : \mathbb{R} \to \mathbb{R}, x \to x^3 \). We know that \(\mathbb{R} \) is a manifold by example (1) from class (8/29). Furthermore, \(f \) is one-one because \(x^3 = y^3 \) implies \(x = y \), and \(f \) is onto because for any \(x \in \mathbb{R} \) we have \(\sqrt[3]{x} \in \mathbb{R} \) with \(f(\sqrt[3]{x}) = (\sqrt[3]{x})^3 = x \). So \(f \) fulfills the hypothesis of the claim.

However, we will show that \(f \) is not a diffeomorphism.

By definition, the inverse of a diffeomorphism is smooth. In our example, \(f^{-1} : \mathbb{R} \to \mathbb{R}, x \to \sqrt[3]{x} \).

Using the concept of total derivative, we know that \(f^{-1} \) is differentiable at \(a \in \mathbb{R} \) if and only if there exists a linear map \(L : \mathbb{R} \to \mathbb{R} \) such that
\[
\lim_{v \to 0} \frac{|f^{-1}(a + v) - f^{-1}(a) - L(v)|}{|v|} = 0.
\]

Note that at \(a = 0 \) this becomes
\[
\lim_{v \to 0} \frac{|f^{-1}(v) - f^{-1}(0) - L(v)|}{|v|} = \lim_{v \to 0} \frac{\sqrt[3]{v} - L(v)}{|v|}.
\]

The right-hand side of the equation is unbounded and hence \(L \) does not exist. This means \(f^{-1} \) is not differentiable at \(x = 0 \) and so is not smooth. Therefore, \(f \) is not a diffeomorphism.

2

Proposition. Let \(M \) be a manifold and \(f : M \to \mathbb{R} \) a map. The graph of \(f \) is defined to be \(G_f = \{(x, f(x)) \mid x \in M\} \). Put
\[
\phi : M \to G_f, \quad x \mapsto (x, f(x)).
\]

If \(f \) is smooth, then \(\phi \) is a diffeomorphism. This implies that \(G_f \) is a manifold because it is diffeomorphic to \(M \).

Proof. Suppose \(\phi(x) = \phi(y) \) for some \(x, y \in M \). Then by definition of \(\phi \) we have \((x, f(x)) = (y, f(y)) \) and in the first component we see \(x = y \). Thus \(\phi \) is one-one. Now, let \((x, f(x)) \in G_f \).

Then by definition of \(G_f \) we have \(x \in M \). Applying \(\phi \) to \(x \) yields \(\phi(x) = (x, f(x)) \) and so \(\phi \) is onto.

We know that \(\phi \) is smooth because we can view it component-wise as \(\phi(x) = (\phi^1(x), \phi^2(x)) \) where \(\phi^1 \) is the identity function on \(M \) and \(\phi^2 = f \), both of which are smooth. We also know that \(\phi^{-1} : G_f \to M, (x, f(x)) \to x \) is smooth because it is a linear projection from \(G_f \) to \(M \). Therefore, \(\phi \) is a diffeomorphism.
3

Proposition. Let \(C = \{(2 \cos t, 2 \sin t, 0) \mid 0 \leq t < 2\pi\} \subset \mathbb{R}^3 \) and let \(T = \{p \in \mathbb{R}^3 \mid d(p, C) = 1\} \). Then the torus \(T \) is diffeomorphic to \(S^1 \times S^1 \).

Proof. We will view \(S^1 \) as the set \(\{(\cos \mu, \sin \mu) \mid 0 \leq \mu < 2\pi\} \) in \(\mathbb{R}^2 \), and so \(S^1 \times S^1 = \{(\cos \mu, \sin \mu), (\cos \lambda, \sin \lambda) \mid 0 \leq \mu, \lambda < 2\pi\} \). For convenience we will omit the extra parentheses. Let

\[
\phi : S^1 \times S^1 \rightarrow T, \quad (\cos \mu, \sin \mu, \cos \lambda, \sin \lambda) \rightarrow ((2 + \cos \mu) \cos \lambda, (2 + \cos \mu) \sin \lambda, \sin \mu).
\]

First, we must verify that \(\phi(S^1 \times S^1) \subseteq T \). Let \(s = (\cos \mu, \sin \mu, \cos \lambda, \sin \lambda) \in S^1 \times S^1 \). It is our task to show \(\phi(s) \in T \); that is, \(d(\phi(s), C) = \min_{c \in C} |\phi(s) - c| = 1 \). Using the definition of \(C \) and the identity \(\sin^2 \theta + \cos^2 \theta = 1 \), we see

\[
d(\phi(s), C) = \min_{0 \leq t < 2\pi} \sqrt{((2 + \cos \mu) \cos \lambda - 2 \cos t)^2 + ((2 + \cos \mu) \sin \lambda - 2 \sin t)^2 + (\sin \mu - 0)^2}
= \min_{0 \leq t < 2\pi} \sqrt{(2 + \cos \mu)^2 + 4 - 4(2 + \cos \mu)(\cos \lambda \cos t + \sin \lambda \sin t) + \sin^2 \mu}
= \min_{0 \leq t < 2\pi} \sqrt{4 + 4 \cos \mu + \cos^2 \mu + 4 - 4(2 + \cos \mu)(\cos \lambda \cos t + \sin \lambda \sin t) + \sin^2 \mu}
= \min_{0 \leq t < 2\pi} \sqrt{1 + (8 + 4 \cos \mu) - (8 + 4 \cos \mu)(\cos \lambda \cos t + \sin \lambda \sin t)}
= \min_{0 \leq t < 2\pi} \sqrt{1 + (8 + 4 \cos \mu)(1 - \cos \lambda \cos t + \sin \lambda \sin t)}.
\]

Note that \(d(\phi(s), C) \) is bounded above by 1 because for \(t = \lambda \) we have within \((*)\)

\[
\sqrt{1 + (8 + 4 \cos \mu)(1 - \cos \lambda \cos t + \sin \lambda \sin t)} = \sqrt{1 + (8 + 4 \cos \mu)(1 - \cos^2 \lambda + \sin^2 \lambda)}
= \sqrt{1 + (8 + 4 \cos \mu)}(1 - 1) = \sqrt{1} = 1.
\]

Moreover, \(d(\phi(s), C) \) is bounded below by 1 because within \((*)\) the expression \(\cos \lambda \cos t + \sin \lambda \sin t \) is at most 1, and thus \(1 - \cos \lambda \cos t + \sin \lambda \sin t \) is at least 0. It follows from \((*)\) that

\[
d(\phi(s), C) \geq \sqrt{1 + (8 + 4 \cos \mu)(0)} = \sqrt{1} = 1.
\]

So indeed \(d(\phi(s), C) = 1 \) and consequently \(\phi(s) \in T \).

Now, to show injectivity suppose \(\phi(\cos \mu, \sin \mu, \cos \lambda, \sin \lambda) = \phi(\cos m, \sin m, \cos \ell, \sin \ell) \) in the image of \(\phi \). It follows that

\[
(i) \quad (2 + \cos \mu) \cos \lambda = (2 + \cos m) \cos \ell
(ii) \quad (2 + \cos \mu) \sin \lambda = (2 + \cos m) \sin \ell
(iii) \quad \sin \mu = \sin \ell.
\]

By solving \((i)\) and \((ii)\) for \(\cos \mu \) and setting them equal, we find that

\[
\frac{(2 + \cos m) \cos \ell}{\cos \lambda} - 2 = \frac{(2 + \cos m) \sin \ell}{\sin \lambda} - 2,
\]

which implies \(\frac{\cos \ell}{\cos \lambda} = \frac{\sin \ell}{\sin \lambda} \) or equivalently \(\cot \ell = \cot \lambda \). By the properties of the cotangent function and the restriction of \(\lambda, \ell \) to \([0, 2\pi) \), we know that \(\lambda = \ell + \pi \cdot a \) for some \(a \in \{0, 1\} \). Suppose \(a = 1 \) and so \(\lambda = \ell + \pi \). This means \(\cos \lambda = -\cos \ell \) and by \((i)\)

\[
2 + \cos \mu = -(2 + \cos m).
\]
But this is absurd because the left-hand side is at least 1 while the right-hand side is at most -1. Hence \(a = 0 \) and \(\ell = \lambda \). Using this with (ii) we see \(2 + \cos \mu = 2 + \cos m \) and thus \(\cos \mu = \cos m \). By (iii) we also have \(\sin \mu = \sin m \). It follows that \(\mu = m \). Therefore, \((\cos \mu, \sin \mu, \cos \lambda, \sin \lambda) = (\cos m, \sin m, \cos \ell, \sin \ell) \) in \(S^1 \times S^1 \) and \(\phi \) is one-one.

To show surjectivity, let \(p \in T \). Then \(p \) is determined by three parameters \((x, z, \theta)\) where the \(1 \leq x \leq 3 \) and \(-1 \leq z \leq 1\) establish a position on the circle \((x - 2)^2 + z^2 = 1\) and \(\theta \) rotates this about the \(z \)-axis in \(\mathbb{R}^3 \). Consider \((x - 2, z, \cos \theta, \sin \theta) \in S^1 \times S^1 \). When we apply \(\phi \) we get

\[
\phi(x - 2, z, \cos \theta, \sin \theta) = ((2 + x - 2) \cos \theta, (2 + x - 2) \sin \theta, z) = (x \cos \theta, x \sin \theta, z).
\]

This is precisely the point \(p \in T \), therefore \(\phi \) is onto.

The smoothness of \(\phi \) follows from the fact that it comprises only the trigonometric functions sine and cosine, which are smooth. For

\[
\phi^{-1} : T \to S^1 \times S^1, (x, y, z) \to (\cos(\sin^{-1} z), z, x/(2 + \cos(\sin^{-1} z)), y/(2 + \cos(\sin^{-1} z)))
\]

we have smoothness because the definition of \(T \) guarantees \(-1 \leq z \leq 1\) and we can take \(\sin^{-1} z \) to be well-defined as the value between 0 and \(2\pi \). Moreover, the denominators in the third- and fourth-coordinate are well-behaved because \(2 \neq \cos(\sin^{-1} z) \) for any \(z \).

Therefore, \(\phi \) is a diffeomorphism and \(T \) is diffeomorphic to \(S^1 \times S^1 \).

\[\square\]

4

CLAIM: The sphere \(S^n \) cannot be parametrized by a single chart \(\varphi : S^n \to V \subset \mathbb{R}^n \).

Suppose to the contrary that such a function \(\varphi : S^n \to V \) exists. By the definition of a chart, \(V \) is an open subset of \(\mathbb{R}^n \) and \(S^n \) is homeomorphic to \(V \). Now, we know from point-set topology that \(S^n \) is compact, and compactness is a homeomorphic invariant, so also \(V \) is compact in \(\mathbb{R}^n \).

Let \(C \) be the open cover of \(V \) defined by

\[
C = \left\{ B \left(v, \frac{1}{2} \cdot d(v, \mathbb{R}^n \setminus V) \right) \right\}_{v \in V}.
\]

Note that since \(V \) is open, \(V^o = V \) and thus the distances appearing in the definition of \(C \) are nonzero. Let

\[
S = \left\{ B \left(v_i, \frac{1}{2} \cdot d(v_i, \mathbb{R}^n \setminus V) \right) \right\}_{i=1}^m
\]

be any finite subcover of \(C \). The finiteness grants the existence of \(D := \min_{1 \leq i \leq m} d(v_i, \mathbb{R}^n \setminus V) \). Since \(d(V, \mathbb{R}^n \setminus V) = 0 \), there exists some \(v_* \in V \) such that \(d(v_*, \mathbb{R}^n \setminus V) < \frac{1}{2} \cdot D \).

Since \(S \) covers \(V \), it must be the case that \(v_* \in B(v_k, \frac{1}{2} \cdot d(v_k, \mathbb{R}^n \setminus V)) \) for some \(1 \leq k \leq m \). But then

\[
d(v_k, \mathbb{R}^n \setminus V) \leq d(v_k, v_*) + d(v_*, \mathbb{R}^n \setminus V) < \frac{1}{2} \cdot D
\]

which implies

\[
\frac{1}{2} \cdot d(v_k, \mathbb{R}^n \setminus V) < \frac{1}{2} \cdot D,
\]

or more specifically, \(d(v_k, \mathbb{R}^n \setminus V) < D \). This contradicts the minimality of \(D \), hence \(v_* \) is not covered by \(S \) and \(C \) has no finite subcover. This means that \(V \) is not compact. However, we stated above that \(V \) is compact. This contradiction allows us to conclude that \(\varphi \) does not exist.
Let $N = (0, \ldots, 0, 1)$ be the “north pole” in $S^n \subset \mathbb{R}^{n+1}$, and let $S = -N$ be the “south pole.” Define stereographic projection by

$$
\sigma : S^n \setminus \{N\} \longrightarrow \mathbb{R}^n, \quad (x^1, \ldots, x^{n+1}) \longmapsto \frac{(x^1, \ldots, x^n)}{1 - x^{n+1}}.
$$

Let $\tilde{\sigma}(x) = -\sigma(-x)$ for $x \in S^n \setminus \{S\}$; that is,

$$
\tilde{\sigma} : S^n \setminus \{S\} \longrightarrow \mathbb{R}^n, \quad (x^1, \ldots, x^{n+1}) \longmapsto \frac{(x^1, \ldots, x^n)}{1 + x^{n+1}}.
$$

(a) We will show that $\sigma(x)$ is the point where the line through N and x intersects the n-dimensional subspace where $x^{n+1} = 0$. We will then show that, similarly, $\tilde{\sigma}(x)$ is the point where the line through S and x intersects the same subspace.

The general form of a line in \mathbb{R}^{n+1} is $k_0 + k_1 x^1 + \ldots + k_{n+1} x^{n+1} = 0$. Let $a \in S^n \setminus \{N\}$. We will find an equation for the line L passing through N and $a = (a^1, \ldots, a^{n+1})$. Since $N = (0, \ldots, 0, 1)$ satisfies the equation of L, we know that $k_0 + k_{n+1} = 0$ or $k_{n+1} = -k_0$. Put $k_i = 1$ for $2 \leq i \leq n+1$. Then necessarily $k_0 = -1$. The coefficient k_1 will be determined by the point a. Since a satisfies the equation of L, we know

$$
-1 + k_1 a^1 + \ldots + a^{n+1} = 0.
$$

Solving this for k_1 gives $k_1 = \frac{1-a^2-a^{n+1}}{a^1}$. Hence an equation for L is

$$
-1 + \left(\frac{1-a^2-\ldots-a^{n+1}}{a^1}\right) x^1 + x^2 + \ldots + x^{n+1} = 0. \quad (*)
$$

Now, the point $\sigma(a)$ is clearly contained in the subspace $x^{n+1} = 0$ because its $(n+1)$-coordinate is 0. Moreover, $\sigma(a)$ is contained in L because plugging $\sigma(a)$ into $(*)$ yields

$$
-1 + \left(\frac{1-a^2-\ldots-a^{n+1}}{a^1}\right) \left(\frac{a^1}{1-a^{n+1}}\right) + \left(\frac{a^2}{1-a^{n+1}}\right) + \ldots + \left(\frac{a^n}{1-a^{n+1}}\right) + (0)
$$

$$
= -1 + \left(\frac{1-a^2-\ldots-a^{n+1}}{1-a^{n+1}}\right) + \left(\frac{a^2}{1-a^{n+1}}\right) + \ldots + \left(\frac{a^n}{1-a^{n+1}}\right)
$$

$$
= -1 + \frac{1-a^2-a^2+\ldots+a^n-a^n-a^{n+1}}{1-a^{n+1}}
$$

$$
= -1 + \frac{1-a^{n+1}}{1-a^{n+1}}
$$

$$
= -1 + 1
$$

$$
= 0.
$$

Therefore, $\sigma(a)$ is the point of intersection between L and the subspace $x^{n+1} = 0$.

For the stereographic projection from the south pole, let $b \in S^n \setminus \{S\}$. We will use the same general form for the line L except now the point $S = (0, \ldots, 0, -1)$ implies $k_{n+1} = k_0$. Again we put $k_i = 1$ for $2 \leq i \leq n+1$. Then necessarily $k_0 = 1$ also. The coefficient k_1 will be determined by the point $b = (b^1, \ldots, b^{n+1})$. Since b satisfies the equation of L, we know

$$
1 + k_1 b^1 + \ldots + b^{n+1} = 0.
$$
Solving this for k_1 gives $k_1 = \frac{-1 - b^2 - \ldots - b^{n+1}}{b^1}$. Hence an equation for \tilde{L} is

$$1 + \left(\frac{-1 - b^2 - \ldots - b^{n+1}}{b^1} \right) x^1 + x^2 + \ldots + x^{n+1} = 0. \quad (\dagger)$$

As before, $\tilde{\sigma}(b)$ is clearly contained in the appropriate subspace because its $(n+1)$-coordinate is 0. Furthermore, $\tilde{\sigma}(b)$ is contained in \tilde{L} because plugging $\tilde{\sigma}(b)$ into (\dagger) yields

$$1 + \left(\frac{-1 - b^2 - \ldots - b^{n+1}}{b^1} \right) \left(\frac{b^1}{1 + b^{n+1}} \right) + \ldots + \left(\frac{b^n}{1 + b^{n+1}} \right) + (0)$$

$$= 1 + \left(\frac{-1 - b^2 - \ldots - b^{n+1}}{1 + b^{n+1}} \right) + \ldots + \left(\frac{b^n}{1 + b^{n+1}} \right)$$

$$= 1 + \frac{-1 - b^{n+1}}{1 + b^{n+1}}$$

$$= 1 - 1$$

$$= 0.$$

Therefore, $\tilde{\sigma}(b)$ is the point of intersection between \tilde{L} and the subspace $x^{n+1} = 0$.

(b) We will show that σ is bijective with inverse

$$\sigma^{-1}(u^1, \ldots, u^n) = \frac{(2u^1, \ldots, 2u^n, |u|^2 - 1)}{|u|^2 + 1}.$$

To demonstrate injectivity, let a and b be points from $S^n \setminus \{N\}$ such that $\sigma(a) = \sigma(b)$. Suppose to the contrary that $a \neq b$. Then the line from N to $\sigma(a) = \sigma(b)$ intersects S^n at three distinct points—N, a, b. But this is absurd because S^n is convex. Thus $a = b$ and σ is one-one.

To demonstrate surjectivity, let p be any point in the subspace of \mathbb{R}^{n+1} where $x^{n+1} = 0$. Let L be the line through p and N. Since L has no curvature and S^n has positive curvature, it is necessarily the case that L intersects $S^n \setminus \{N\}$ at some point a. Then by definition of σ we have $\sigma(a) = p$. So σ is onto.

To demonstrate that σ and σ^{-1} are indeed inverses, observe

$$\sigma(\sigma^{-1}(u^1, \ldots, u^n)) = \sigma \left(\frac{(2u^1, \ldots, 2u^n, |u|^2 - 1)}{|u|^2 + 1} \right)$$

$$= \frac{(2u^1, \ldots, 2u^n)}{|u|^2 + 1} \cdot \frac{1}{\frac{|u|^2 - 1}{|u|^2 + 1}}$$

$$= \frac{(2u^1, \ldots, 2u^n)}{|u|^2 + 1} \cdot \frac{1}{\frac{|u|^2 + 1 - |u|^2}{|u|^2 + 1}}$$

$$= \frac{(2u^1, \ldots, 2u^n)}{|u|^2 + 1} \cdot \frac{|u|^2 + 1}{2}$$

$$= (u^1, \ldots, u^n).$$

Since their composition is the identity function on \mathbb{R}^n, σ and σ^{-1} are inverses of each other.

(c) We will compute the transition map $\tilde{\sigma} \circ \sigma^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ and then verify that the atlas $\mathcal{A} = \{(S^n \setminus \{N\}, \sigma), (S^n \setminus \{S\}, \tilde{\sigma})\}$ defines a smooth structure on S^n.

5
Using parts (a) and (b), we have

\[
(\tilde{\sigma} \circ \sigma^{-1})(u^1, \ldots, u^n) = \tilde{\sigma} \left(\frac{(2u^1, \ldots, 2u^n, |u|^2 - 1)}{|u|^2 + 1} \right)
\]

\[
= \frac{(2u^1, \ldots, 2u^n)}{|u|^2 + 1} \cdot \frac{1}{1 + \frac{|u|^2 - 1}{|u|^2 + 1}}
\]

\[
= \frac{(2u^1, \ldots, 2u^n)}{|u|^2 + 1} \cdot \frac{1}{\frac{|u|^2 + 1 + |u|^2 - 1}{|u|^2 + 1}}
\]

\[
= \frac{(2u^1, \ldots, 2u^n)}{|u|^2 + 1} \cdot \frac{|u|^2 + 1}{2|u|^2}
\]

\[
= \frac{(u^1, \ldots, u^n)}{|u|^2}.
\]

To verify that \(\mathcal{A} \) defines a smooth structure on \(S^n \) we must check that \(\mathcal{A} \mathcal{A} \) is a smooth atlas (i.e, \(\tilde{\sigma} \circ \sigma^{-1} \) is a diffeomorphism). Once we know \(\mathcal{A} \) is smooth, lemma 1.10(a) gives that \(\mathcal{A} \) is contained in a maximal smooth atlas, which is by definition a smooth structure on \(S^n \).

By part (b), \(\sigma^{-1} \) is bijective and by the symmetry of \(\tilde{\sigma} \) to \(\sigma \), it follows that \(\tilde{\sigma} \) is also bijective. Thus \(\tilde{\sigma} \circ \sigma^{-1} \) is bijective. We saw above that \((\tilde{\sigma} \circ \sigma^{-1})(u) = u/|u|^2 \) which is clearly smooth. Also, \((\tilde{\sigma} \circ \sigma^{-1})^{-1} \) can be shown to be smooth. Therefore \(\tilde{\sigma} \circ \sigma^{-1} \) is a diffeomorphism and \(\mathcal{A} \) is a smooth atlas.

(d) By 1.10(b), two smooth atlases determine the same smooth structure if and only if their union is itself a smooth atlas. We will show that \(\mathcal{A} \) and the standard atlas \(\{(U_i^\pm, \phi_i^\pm)\} \) for \(1 \leq i \leq 2 \) (see problem 7) determine the same smooth structure.

Incomplete.

6

Let \(f : \mathbb{R} \to \mathbb{R} \) be the bump function

\[
f(x) = \begin{cases}
 e^{-1/x^2} & x > 0 \\
 0 & x \leq 0.
\end{cases}
\]

(a) We will prove that \(f \) is smooth.

Clearly \(f \) is smooth to the left of \(x = 0 \). Note that the functions \(x \to e^{-x} \) and \(x \to 1/x^2 \) are smooth for \(x > 0 \). In this domain, \(f \) is simply the composition of these two functions and so \(f \) is smooth to the right of \(x = 0 \). It remains to be checked that \(f \) is smooth at \(x = 0 \).
We know f is continuous at $x = 0$ because

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} e^{-1/x^2} = \lim_{x \to 0^+} \frac{1}{e^{1/x^2}} = 0.$$

To show that $f^{(k)}(x)$ exists and is continuous we will induct on k. For $x < 0$ this is obvious, so we will restrict our attention to $x \geq 0$ with special attention to $x = 0$ at the conclusion. We will also include in this induction the form of the derivative, namely

$$f^{(k)}(x) = \frac{p_k(x)}{x^{(3)2^k-1}} e^{-1/x^2}$$

for some polynomial $p_k(x)$.

Base Step: When $k = 1$ we have

$$f'(x) = \frac{2}{x^3} e^{-1/x^2} = \frac{2}{x^{(3)2^0}} e^{-1/x^2}$$

which is of the proper form and is continuous because three applications of l’Hopital’s to $\lim_{x \to 0^+} 2x^{-3}/e^{1/x^2}$ shows that this is 0.

Inductive Step: Suppose

$$f^{(k)}(x) = \frac{p_k(x)}{x^{(3)2^k-1}} e^{-1/x^2}$$

exists, is continuous, and is of the form shown. By the product and quotient rules,

$$f^{(k+1)}(x) = \frac{p'_{k}(x) \cdot x^{(3)2^k-1} - p_k(x) (3)2^{k-1}x^{(3)2^k-2} \cdot 2^{k-1}}{(x^{(3)2^k-1})^2} e^{-1/x^2} + \frac{2p_k(x)}{x^{3(3)2^{k-1}}} e^{-1/x^2}$$

$$= \left(\frac{p'_{k}(x) \cdot x^{(3)2^k-1} - p_k(x) (3)2^{k-1}x^{(3)2^k-2} \cdot 2^{k-1}}{(x^{(3)2^k-1})^2} + \frac{2p_k(x)}{x^{3(3)2^{k-1}}} \right) e^{-1/x^2}$$

$$= \frac{p'_{k}(x)(x^{(3)2^k-1}) - (3)2^{k-1}p_k(x) x^{(3)2^k-2} + p_k(x) (x^{(3)2^k-2} - 1)}{x^{(3)2^k}} e^{-1/x^2}.$$

So the form of $f^{(k+1)}$ is correct. This derivative tends to 0 because, again, we can view it as a polynomial tending to infinity over an exponential tending to infinity, and repeating l’Hopital’s rule at most $(3)2^k$-times will show that the numerator will become 0 while the denominator still tends to infinity, making $\lim_{x \to 0^+} f^{(k)}(x) = 0$. Moreover, the derivative has a value of 0 at $x = 0$ as shown inductively below using the definition of derivative:

$$f^{(k+1)}(0) = \lim_{h \to 0^+} \frac{f^{(k)}(h) - f^{(k)}(0)}{h}$$

$$= \lim_{x \to 0^+} \frac{p_k(h)}{h^{(3)2^{k-1}}} e^{-1/h^2} - 0$$

$$= \lim_{x \to 0^+} \frac{p_k(h)}{h^{(3)2^{k-1}+1}} e^{-1/h^2}$$

$$= 0.$$

So the derivatives of f exist and are continuous, therefore f is smooth.
(b) Fix $0 < a < b$. Define $g(x) = f(x - a)f(b - x)$.

We can write g explicitly as

$$g(x) = \begin{cases}
0 & x \leq a \\
\frac{-1}{e^{(x-a)^2}} & a < x < b \\
0 & x \geq b.
\end{cases}$$

From this it is clear that g is positive between a and b (because a power of e is never negative) and 0 elsewhere. The smoothness of g follows from the fact that it is a product of smooth functions.

(c) Sketch

$$h(x) = \frac{\int_{-\infty}^x g \, dx}{\int_{-\infty}^\infty g \, dx}.$$

(d) Incomplete.

7

(a) Let $p = (a, b)$ be a point in $S^1 \subset \mathbb{R}^2$. We will show that the tangent space to S^1 at the point p, denoted $T_p S^1$, is precisely span\{(-b, a)\}.

We will employ the standard smooth structure on S^1. So U_1^- is the left semicircle, U_1^+ is the right semicircle, U_2^- is the lower semicircle, and U_2^+ is the upper semicircle. Furthermore, φ_1^\pm and φ_2^\pm are the corresponding graph coordinates from Example 1.2 in the text. The inverse maps from \mathbb{R} to S^1 are

$$\psi_1^- (y) = (-\sqrt{1-y^2}, y) \quad \psi_1^+ (y) = (\sqrt{1-y^2}, y)$$
$$\psi_2^- (x) = (x, -\sqrt{1-x^2}) \quad \psi_2^+ (x) = (x, \sqrt{1-x^2}).$$
Note that since ψ_i^{\pm} is the inverse of φ_i^{\pm} for $1 \leq i \leq 2$, we know $\psi_i^{\pm}(\varphi_i^{\pm}(p)) = (a, b)$. Now, suppose $p \in U_1^-$. By the definition of tangent space from class (8/31), $T_p S^1$ is the span of $(D\psi_1^-)_p$ in \mathbb{R}^2. In this case, we compute

$$(D\psi_1^-)_p = \frac{d}{dy}(-\sqrt{1 - y^2}, y)$$

$$= \left(-\frac{1}{2}(1 - y^2)^{-1/2}(-2y), 1\right)$$

$$= \left(\frac{y}{\sqrt{1 - y^2}}, 1\right)$$

$$= \left(\frac{b}{-a}, 1\right).$$

But $T_p S^1 = \text{span}\{(-b/a, 1)\} = \text{span}\{(-b, a)\}$, so this case is verified. The result is consistent across any location of p. This is verified in the APPENDIX.

(b) Consider $S^2 \subset \mathbb{R}^3$ with the standard smooth structure. As above, let $\psi_i^{\pm}: \mathbb{R}^2 \to S^2$ be the inverse maps for $1 \leq i \leq 3$. So

$$\psi_1^+(y, z) = (\pm \sqrt{1 - y^2 - z^2}, y, z)$$

$$\psi_2^+(x, z) = (x, \pm \sqrt{1 - x^2 - z^2}, z)$$

$$\psi_3^+(x, y) = (x, y, \pm \sqrt{1 - x^2 - y^2}).$$

Let $p = (a, b, c)$ be a point in S^2. We will determine $T_p S^2$ in terms of a, b, c.

Note that $\psi_i^+(\varphi_i^{\pm}(p)) = (a, b, c)$. Now, suppose $p \in U_3^+$. Then we compute

$$\frac{\partial}{\partial x} \psi_3^+ = (1, 0, \frac{1}{2}(1 - x^2 - y^2)^{-1/2}(-2x))$$

$$= (1, 0, \frac{-x}{\sqrt{1 - x^2 - y^2}})$$

$$= (1, 0, \frac{-a}{c})$$

$$\frac{\partial}{\partial y} \psi_3^+ = (0, 1, \frac{1}{2}(1 - x^2 - y^2)^{-1/2}(-2y))$$

$$= (0, 1, \frac{-y}{\sqrt{1 - x^2 - y^2}})$$

$$= (0, 1, \frac{-b}{c}).$$

From this we can see that $T_p S^2 = \text{span}\{(-c, 0, a), (0, -c, b)\}$. Just as before, this result is consistent across all charts. We will not compute all of them here, but as an example we consider $p \in U_2^-:

$$\frac{\partial}{\partial x} \psi_2^- = (1, -\frac{1}{2}(1 - x^2 - z^2)^{-1/2}(-2x), 0)$$

$$= (1, -\frac{x}{\sqrt{1 - x^2 - z^2}}, 0)$$

$$= (1, -\frac{a}{\sqrt{\sqrt{1 - x^2 - z^2}}}, 0)$$

$$\frac{\partial}{\partial z} \psi_2^- = (0, -\frac{1}{2}(1 - x^2 - z^2)^{-1/2}(-2z), 1)$$

$$= (0, -\frac{z}{\sqrt{1 - x^2 - z^2}}, 1)$$

$$= (0, -\frac{z}{\sqrt{\sqrt{1 - x^2 - z^2}}}, 1).$$
Observe that the resulting vectors \((-b, a, 0)\) and \((0, -c, b)\) are different than those above, but we have the linear combinations
\[
\frac{b}{c}(-c, 0, a) + \frac{-a}{c}(0, -c, b) = \left(-b, 0, \frac{ab}{c}\right) + \left(0, a, -\frac{ab}{c}\right) = (-b, a, 0)
\]
\[0(-c, 0, a) + 1(0, -c, b) = (0, -c, b).
\]
So \((-b, a, 0), (0, -c, b) \in \text{span}\{(-c, 0, a), (0, -c, b)\}. \) It follows that \(\text{span}\{(-b, a, 0), (0, -c, b)\} = \text{span}\{(-c, 0, a), (0, -c, b)\}.

APPENDIX

We have already seen \(p \in U_1^-\). If \(p \in U_1^+\), then
\[
(D\psi_1^+)_p = \frac{d}{dy}(\sqrt{1-y^2}, y)
= \left(\frac{1}{2}(-y^2)^{-1/2}(-2y), 1\right)
= \left(\frac{-y}{\sqrt{1-y^2}}, 1\right)
= \left(\frac{-b}{a}, 1\right).
\]

If \(p \in U_2^-\), then
\[
(D\psi_2^-)_p = \frac{d}{dx}(x, -\sqrt{1-x^2})
= \left(1, -\frac{1}{2}(1-x^2)^{-1/2}(-2x)\right)
= \left(1, \frac{x}{\sqrt{1-x^2}}\right)
= \left(1, \frac{a}{b}\right).
\]

Finally, if \(p \in U_2^+\), then
\[
(D\psi_2^+)_p = \frac{d}{dx}(x, \sqrt{1-x^2})
= \left(1, \frac{1}{2}(1-x^2)^{-1/2}(-2x), 1\right)
= \left(1, \frac{-x}{\sqrt{1-x^2}}\right)
= \left(1, \frac{-a}{b}\right).
\]

And of course they all agree, because
\[
\text{span}\{\left(\frac{b}{-a}, 1\right)\} = \text{span}\{\left(-\frac{b}{a}, 1\right)\} = \text{span}\{\left(1, \frac{a}{-b}\right)\} = \text{span}\{\left(1, \frac{-a}{b}\right)\} = \text{span}\{(-b, a)\} = T_p S^1.
\]