1

Proposition. Let \((G, *)\) be a group and \(I\) a set. Let \(G^I\) be the set of all functions \(f : I \rightarrow G\). For all \(f, g \in G^I\) define \(f * g \in G^I\) by

\[
(f * g)(i) = f(i) * g(i) \quad \text{for all} \quad i \in I.
\]

Then \((G^I, *)\) is also a group.

Proof. First, let us consider \((f * (g * h))(i)\) for some \(f, g, h \in G^I\). By definition, \((f * (g * h))(i) = f(i) * (g(i) * h(i))\) where \(f(i), g(i)\) and \(h(i)\) are elements of \(G\). Since \((G, *)\) is a group, it follows that \(f(i) * (g(i) * h(i)) = (f(i) * g(i)) * h(i) = ((f * g) * h)(i)\), and we see that the operation \(*\) is associative in \(G^I\).

Second, let us consider the function \(e_I \in G^I\) that maps every \(i \in I\) to the identity element \(e \in G\). For any \(f \in G^I\), \((f * e_I)(i) = f(i)*e = f(i)\) and \((e_I * f)(i) = e_I(i)*f(i) = e*f(i) = f(i)\). Therefore, the function \(e_I\) is the identity element of \((G^I, *)\).

Third, we must show that every \(f \in G^I\) has an inverse \(f^{-1} \in G^I\) such that \((f * f^{-1})(i) = e_I(i)\). Let \(f\) be an arbitrary function from \(G^I\). By definition, \(f\) maps every element \(i \in I\) to some element \(f(i) \in G\). Consider the relation \(H \subset I \times G\) that pairs each \(i \in I\) with the element \((f(i))^{-1} \in G\). Since \((G, *)\) is a group we know that each \((f(i))^{-1}\) exists and is unique; thus, our relation is actually a function, call it \(h\), and is necessarily an element of \(G^I\). Now, \((f * h)(i) = f(i) * h(i) = f(i) * (f(i))^{-1} = e\). But the function that maps everything to \(e\) is the identity \(e_I(i)\). So \((f * h)(i) = e_I(i)\), and it can be similarly shown that \((h * f)(i) = e_I(i)\). Therefore, \(h = f^{-1}\) and each element of \(G^I\) has an inverse. We can now conclude that \((G^I, *)\) is a group. □

2

Let \(G\) be a finite group of even order. We will show that there exists \(g \in G\) with \(g \neq e\) and \(g^2 = e\). Note that each element of a group has an unique inverse element (Proposition 1.2 of Grove).

Suppose \(n\) is an even integer greater than 0 and \(G = \{x_1, x_2, \ldots, x_n\}\). Let the elements of \(G\) be reordered and reindexed so that \(x_1\) is the identity element and inverse elements are paired together. Certainly \(x_1\) is its own inverse. Thereafter, \(x_3 = x_2^{-1}, x_5 = x_4^{-1}, \ldots, x_{n-1} = x_{n-2}^{-1}\). Consider the element \(x_n\). By the definition of a group it must have an inverse, but the inverse cannot be any of the previous elements because that would violate our note above. Therefore, \(x_n\) must be its own inverse, implying \(x_n^2 = e\).

3

Consider the pre-group \((G, *)\) given in the table below. The simple calculations below show that \(*\) is associative, which means \((G, *)\) is a semi-group.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>(b)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
a(aa) &= a = (aa)a & a(ab) &= b = (aa)b & a(ba) &= a = (ab)a & b(aa) &= a = (ba)a \\
b(ba) &= a = (bb)a & b(ab) &= b = (ba)b & a(bb) &= b = (ab)b & b(bb) &= b = (bb)b
\end{align*}
\]
(a) Consider the element a. It is true that $a * a = a$ and $a * b = b$, thus a is a left-identity.
(b) Observe that $a * a = a$ and $b * a = a$. We see that each element of G has a right-inverse, namely a, such that right-multiplication by this element equals the left-inverse from above.
(c) The semi-group (G, \ast) is not a group because it does not have an identity e such that $g \ast e = e \ast g = g$ for all $g \in G$. The element a cannot be the identity since $b \ast a = a \neq b = a \ast b$. The element b cannot be the identity for the same reason.

4

Proposition. If (G, \ast) is a group with $(ab)^n = a^n b^n$ for all $a, b \in G$ and three consecutive integers $n, n + 1$ and $n + 2$, then G is abelian.

Proof. Let $n \in \mathbb{N}$. By associativity and the definition of exponents, $(ab)^{n+1} = a(ba)^n b$. By our assumption, $a^{n+1} b^{n+1} = a(ba)^n b$. Since a^{-1} and b^{-1} exist in G, we can multiply the former on the left and the latter on the right to get $a^n b^n = (ba)^n$, or equivalently $(ab)^n = (ba)^n$. Note that $(ab)^n$ and $(ba)^n$ must have the same inverse, call it k.

The preceding argument can be repeated with $n+1$ in place of n and $n+2$ in place of $n+1$. The result is $(ab)^{n+1} = (ba)^{n+1}$. This equation can be rewritten as $(ab)^n(ab) = (ba)^n(ba)$. Next, we multiply k on the left so that $(k(ab)^n)(ab) = (k(ba)^n)(ba)$. But $k(ab)^n = k(ba)^n = e$ where e is the identity element of G. Therefore, $ab = ba$ and we conclude that (G, \ast) is abelian. □

5

Proposition. Let (G, \ast) be a non-empty finite semi-group. If for all $a, b, c \in G$,

(i) $ab = ac$ implies $b = c$, and
(ii) $ba = ca$ implies $b = c$,

then (G, \ast) is a group.

Proof. First, we consider associativity. This is given by the fact that (G, \ast) is a semi-group, which is associative by definition.

Second, let us consider identity. Since (G, \ast) is non-empty and finite we can consider its multiplication table. Clearly, the product ab appears in row a of the table. Moreover, by (i), the product ab can appear in row a only once. Since b was arbitrary and G is finite, it follows that each element of G appears exactly once in row a. This means a appears in row a and there must exist an $a_{e,r} \in G$ such that $a * a_{e,r} = a$.

By (ii), the product ba shows up exactly once in column a, and using a similar argument to that above, each element of G appears exactly once in column a. Thus, a appears in column a and there exists an $a_{r,l} \in G$ such that $a_{r,l} * a = a$. Next, we will show that this left-identity of a and the right-identity of a are equal.

Consider $aa = (a_{e,r})a = a(e_{r,l}a)$. By (i), we know that $a = a_{e,r}a$ and it becomes clear that $a_{e,r}$ is also the left-identity of a; that is, $a_{e,r} = a_{e,l}$. Hereafter we will write simply a_e.

Since a was arbitrary, we have shown that each element of G has an identity. In fact, they each have the same identity. Let a and b be any elements of G and let a_e and b_e be their respective identities. Consider $ba_e = (b_{e,r})a_e = b(b_e a_e)$. It follows from (i) that $a_e = b_{e,l}a_e$. Now, consider $b_e a = b_e(a_{e,l}a) = b_(e,l) a_e$ a. It follows from (ii) that $b_e = b_e a_e$. But this means that $a_{e,l} = b_e$, which we may now call e, the identity element of G with respect to \ast.

Third, we will show that each element has an inverse. Choose $a \in G$. As determined above, e must appear exactly once in row a and exactly once in column a. Thus, there exist $a_{e,r}^{-1}, a_{l}^{-1} \in G$ such that $aa_{e,r}^{-1} = e$ and $a_{l}^{-1}a = e$. Let us consider $ae = ea = (aa_{e,r}^{-1})a = a(a_{e,r}^{-1}a)$. But we know from (i) that $ae = a(a_{e,r}^{-1}a)$ implies $e = a_{e,r}^{-1}a$. From this, it is clear to see that $a_{e,r}^{-1}$ is also the left-inverse of a; that is, $a_{e,r}^{-1} = a_{l}^{-1} = a^{-1}$. Therefore, every element of G has an inverse.

Having proven associativity, the existence of an identity element, and the existence of inverse elements, we can conclude that (G, \ast) is a group. □
Let $\mathcal{E} = (\mathcal{P}, \mathcal{L}, \mathcal{R})$ be a projective plane of order two. Let l be a line and let

$$H = \{ \phi \in \text{Aut}(\mathcal{E}) \mid \phi(A) = A \text{ for all points incident with } l \}.$$

What is the order of H? Recall that the mapping of any three noncollinear to any three noncollinear points uniquely determines an automorphism of \mathcal{E} because three noncollinear points uniquely determine the projective plane of order two. Without loss of generality, let $A, B, C \in \mathcal{P}$ be noncollinear and let $l \in \mathcal{L}$ be incident with A and B. By definition, $\phi(A) = A$ and $\phi(B) = B$. Let us ponder the image of C under ϕ.

Since \mathcal{E} has exactly seven points and two of them have already been mapped to, there are five possibilities left for $\phi(C)$. But C cannot be mapped to the remaining point incident with l because that would mean that three noncollinear points (A, B, C) were mapped to three collinear points (those on l), which is impossible given the definition of an automorphism. Therefore, only four possibilities exist for $\phi(C)$ that would maintain the noncollinear property of $\phi(A)$, $\phi(B)$, and $\phi(C)$. This means $|H| = 4$.

We know $\text{Sym}(4)$ is a group and $\text{Sym}(3)$ a subgroup under the operation of function composition. The function $\alpha \in \text{Sym}(4)$ is, by definition, a bijection on $\{1, 2, 3, 4\}$. We will write α explicitly as

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \alpha(1) & \alpha(2) & \alpha(3) & \alpha(4) \end{pmatrix}.$$

The cosets of $\text{Sym}(3)$ in $\text{Sym}(4)$ are as follows:

$$\begin{array}{c}
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}
\end{array} \text{Sym}(3):
\begin{array}{c}
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}
\end{array}$$

$$\begin{array}{c}
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}
\end{array} \text{Sym}(3):
\begin{array}{c}
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}
\end{array}$$

$$\begin{array}{c}
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}
\end{array} \text{Sym}(3):
\begin{array}{c}
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}
\end{array}$$

Within each of these equivalence classes, any element can be mapped to any other element (or itself) through composition with an element of $\text{Sym}(3)$. Moreover, there does not exist an element of $\text{Sym}(3)$ that will map elements of $\text{Sym}(4)$ between the classes. This is clear because a function $\beta \in \text{Sym}(3)$ can permute only the numbers that are the image of the numbers 1, 2, and 3. It is unable to alter the number that is the image of 4 under the function from $\text{Sym}(4)$ that β is composed with.