Algebra Homework 6

Samuel Otten

1

Let \((R, +, \cdot)\) be a ring and \(G\) a semigroup. Throughout this problem let \(h, l, m, n\) vary in \(G\) unless clearly fixed. From 3.1.7, we have the semigroup ring \((R[G], +, \cdot)\) of \(G\) over \(R\) with the well-defined multiplicative operation

\[* : R[G] \times R[G] \to R[G], (r_g)_{g \in G} \cdot (s_g)_{g \in G} \to (t_g)_{g \in G}, \]

where \(t_g = \sum_{hl=g} r_h \cdot s_l\). Note that we are using \(*\) to emphasize when the multiplication is in \(R[G]\).

(a) We will show that \((R[G], +, \cdot)\) is a ring. First, by 2.8.5(a) \(\bigoplus_{g \in G} R_g\) is a subgroup of the direct product of \((R_g \mid g \in G)\), and so \((R[G], +)\) is a group. Let \((r_g)_{g \in G}, (s_g)_{g \in G} \in R[G]\). Then

\[(r_g)_{g \in G} + (s_g)_{g \in G} = (r_g + s_g)_{g \in G} \quad \text{addition in \(R[G]\) is component-wise} \]
\[= (s_g + r_g)_{g \in G} \quad \text{addition in \(R\) is commutative} \]
\[= (s_g)_{g \in G} + (r_g)_{g \in G}. \]

So we see that \((R[G], +)\) is an abelian group.

Second, we must show that \((R[G], \cdot)\) is a semigroup. We know from 3.1.7 that \(*\) is well-defined. For \((r_g)_{g \in G}, (s_g)_{g \in G}, (t_g)_{g \in G} \in R[G]\), observe

\[(r_g)_{g \in G} \cdot ((s_g)_{g \in G} \cdot (t_g)_{g \in G}) = (r_g)_{g \in G} \cdot \left(\sum_{hl=g} s_h t_l \right) \quad \text{definition of \(*\)} \]
\[= \left(\sum_{mn=g} r_m \cdot \left(\sum_{hl=n} s_h t_l \right) \right) \quad \text{definition of \(*\)} \]
\[= \left(\sum_{mn=g} \left(\sum_{hl=n} r_m(s_h t_l) \right) \right) \quad \text{left-multiplication homomorphism in \(R\)} \]

Let us consider the summands \(r_m(s_h t_l)\), where \(mn = g\) and \(hl = n\). This means \(mhl = g\), so

\[\left(\sum_{mn=g} \left(\sum_{hl=n} r_m(s_h t_l) \right) \right) = \left(\sum_{mhl=g} r_m(s_h t_l) \right) \quad \text{definition of \(*\)} \]
\[= \left(\sum_{mhl=g} (r_m s_h) t_l \right) \quad \text{(\(R, \cdot\)) is a semigroup} \]
\[= \left(\sum_{nl=g} \left(\sum_{mhl=n} r_m s_h \right) t_l \right) \quad \text{right-multiplication homomorphism in \(R\)} \]
\[= \left(\sum_{mh=n} r_m s_h \right) \ast (t_g)_{g \in G} \quad \text{definition of \(*\)} \]
\[= \left((r_g)_{g \in G} \ast (s_g)_{g \in G}\right) \ast (t_g)_{g \in G} \quad \text{definition of \(*\)} \]

So we see that \(*\) is associative and \((R[G], \cdot)\) is a semigroup.
Third, we must show that
\[
\ell_{(r_g)_{g \in G}} : R[G] \to R[G], (s_g)_{g \in G} \to (r_g)_{g \in G} \ (*)_{g \in G}
\]
is a homomorphism over addition. For \((r_g)_{g \in G}, (s_g)_{g \in G}, (t_g)_{g \in G} \in R[G]\), we have
\[
\ell_{(r_g)_{g \in G}}((s_g)_{g \in G} + (t_g)_{g \in G}) = \ell_{(r_g)_{g \in G}}((s_g)_{g \in G} + (t_g)_{g \in G})
\]
definition of \(\ell\)
\[
= (r_g)_{g \in G} \ (*)_{g \in G} ((s_g)_{g \in G} + (t_g)_{g \in G})
\]
addition in \(R[G]\) is component-wise
\[
= \left(\sum_{h \in G} r_h(s_l + t_l) \right)_{g \in G}
\]
definition of \(*\)
\[
= \left(\sum_{h \in G} r_h s_l + r_h t_l \right)_{g \in G}
\]
left-multiplication homomorphism in \(R\)
\[
= \left(\sum_{h \in G} r_h s_l \right)_{g \in G} + \left(\sum_{h \in G} r_h t_l \right)_{g \in G}
\]
addition in \(R\) is commutative
\[
= (r_g)_{g \in G} \ (*)_{g \in G} + (r_g)_{g \in G} \ (*)_{g \in G}
\]
definition of \(*\)
\[
= \ell_{(r_g)_{g \in G}}((s_g)_{g \in G}) \ + \ell_{(r_g)_{g \in G}}((t_g)_{g \in G}).
\]
definition of \(\ell\)

So we see that left-multiplication is a homomorphism of \((R[G],+)\).

Fourth, we must show that
\[
\mathcal{R}_{(r_g)_{g \in G}} : R[G] \to R[G], (s_g)_{g \in G} \to (s_g)_{g \in G} \ (*)_{g \in G}
\]
is a homomorphism over addition. As above,
\[
\mathcal{R}_{(r_g)_{g \in G}}((s_g)_{g \in G} + (t_g)_{g \in G}) = ((s_g)_{g \in G} + (t_g)_{g \in G}) \ (*)_{g \in G}
\]
definition of \(\mathcal{R}\)
\[
= (s_g + t_g)_{g \in G} \ (*)_{g \in G}
\]
addition in \(R[G]\) is component-wise
\[
= \left(\sum_{h \in G} (s_h + t_h) r_l \right)_{g \in G}
\]
definition of \(*\)
\[
= \left(\sum_{h \in G} s_h r_l + t_h r_l \right)_{g \in G}
\]
right-multiplication homomorphism in \(R\)
\[
= \left(\sum_{h \in G} s_h r_l \right)_{g \in G} + \left(\sum_{h \in G} t_h r_l \right)_{g \in G}
\]
addition in \(R\) is commutative
\[
= (s_g)_{g \in G} \ (*)_{g \in G} + (t_g)_{g \in G} \ (*)_{g \in G}
\]
definition of \(*\)
\[
= \mathcal{R}_{(r_g)_{g \in G}}((s_g)_{g \in G}) + \mathcal{R}_{(r_g)_{g \in G}}((t_g)_{g \in G}).
\]
definition of \(\mathcal{R}\)

So we see that right-multiplication is a homomorphism of \((R[G],+)\). Therefore, by definition 3.1.1, the semigroup ring \((R[G],+,*)\) is indeed a ring.

(b) From group theory (2.8.5), we define \(\rho_g : R \to R[G]\) by \(\rho_g(r) = (r_k)_{k \in G}\), where
\[
\begin{align*}
 r_k &= \begin{cases}
 r & \text{if } k = g \\
 0_R & \text{if } k \neq g.
 \end{cases}
\end{align*}
\]
We often denote \(\rho_g(r)\) by \(rg\), so
\[
\sum_{g \in G} rg = \sum_{g \in G} \rho_g(rg).
\]
Let \((a_g)_{g \in G} \in R[G]\). Then by 2.8.5(d), there exist uniquely determined \(r_g \in R_g = R, \ g \in G\) (with almost all \(r_g = 0_R\)) such that

\[
(a_g)_{g \in G} = \sum_{g \in G} \rho_g(r_g) = \sum_{g \in G} r_g g.
\]

In particular, 2.8.5(d) gives \(r_g = a_g\) for all \(g \in G\). So \(\sum_{g \in G} r_g g = (r_g)_{g \in G}\). Note that the converse is also true — the sum over \(G\) of \(r_g g\) uniquely determines the element \((r_g)_{g \in G}\). These last facts will be used extensively below, with \((\Rightarrow)\) used to cite the forward implication and \((\Leftarrow)\) the backward.

(c) We will show that \((\sum_{g \in G} r_g g) + (\sum_{g \in G} s_g g) = \sum_{g \in G} (r_g + s_g) g\). It follows from

\[
\left(\sum_{g \in G} r_g g\right) + \left(\sum_{g \in G} s_g g\right) = (r_g + s_g)_{g \in G} + \sum_{g \in G} g
\]

\[
= (r_g + s_g)_{g \in G} \quad \text{addition in } R[G]\text{ is component-wise}
\]

\[
= \sum_{g \in G} (r_g + s_g) g.
\]

(d) We will show that \((\sum_{g \in G} r_g g) \ast (\sum_{h \in G} s_h h) = \sum_{g, h \in G} (r_g s_h) gh\). Observe

\[
\left(\sum_{g \in G} r_g g\right) \ast \left(\sum_{h \in G} s_h h\right) = (r_g)_{g \in G} \ast (s_h)_{h \in G}
\]

\[
= \left(\sum_{gh=l} r_g s_h\right)_{l \in G}, \quad \text{definition of } \ast
\]

But \(l\) varies through all of \(G\), so for any \(x, y \in G\) we have \(xy = l\) for one of the indexes of the sum. Thus, every possible pair of \(r_x s_y\) appears in the sum, which means

\[
\left(\sum_{gh=l} r_g s_h\right)_{l \in G} = \sum_{g, h \in G} (r_g s_h) gh.
\]

(e) If \(R\) and \(G\) have identities \(1_R\) and \(e_G\), respectively, then \(R[G]\) has an identity: namely, \(1_R e_G\).

We know from part (b) that \(1_R e_G = \rho_{e_G}(1_R)\), which is a tuple \((1_g)_{g \in G}\) such that \(1_g = 0_R\) for all \(g \in G\) except \(1_G = 1_R\). Let \((a_g)_{g \in G} \in R[G]\). Then

\[
(a_g)_{g \in G} \ast (1_g)_{g \in G} = \left(\sum_{hl=g} a_h 1_l\right)_{g \in G}, \quad \text{definition of } \ast
\]

Now, let us consider the sum on the right-hand side. For a particular \(g \in G\), when \(h \neq g\) the product of \(a_h\) and \(1_l\) will be \(a_h 0_R = 0_R\). However, when \(h = g\) we will have \(l = e_G\) and \(1_l = 1_R\). Thus \(a_h 1_R = a_h\) in this case. So the \(g^{th}\) component will be \(0_R + \ldots + 0_R + a_h + 0_R + \ldots = a_h\). Since this occurs for each \(g \in G\), we have

\[
\left(\sum_{hl=g} a_h 1_l\right)_{g \in G} = \left(\sum_{h=g} a_h\right)_{g \in G} = (a_g)_{g \in G}.
\]

We see that \(1_R e_G = (1_g)_{g \in G}\) is an identity in \(R[G]\) because also

\[
(1_g)_{g \in G} \ast (a_g)_{g \in G} = \left(\sum_{hl=g} 1_h a_l\right)_{g \in G}
\]

\[
= \left(\sum_{h=g} a_h\right)_{g \in G}
\]

\[
= (a_g)_{g \in G}.
\]
(f) Suppose R and G are both commutative. Then $R[G]$ is also commutative. Let $(a_g)_{g \in G}$ and $(b_g)_{g \in G}$ be elements of $R[G]$. Then

$$
(a_g)_{g \in G} \ast (b_g)_{g \in G} = \sum_{hl=g} a_h b_l \quad \text{definition of } \\
= \sum_{hl=g} b_l a_h \quad R \text{ is commutative} \\
= \sum_{lh=g} b_l a_h \quad G \text{ is commutative} \\
= (b_g)_{g \in G} \ast (a_g)_{g \in G}. \quad \text{definition of }
$$

It is clear from this that $R[G]$ is commutative.

2

Proposition. Let $(R, +, \cdot)$ be a non-zero finite ring. If R has no left zero divisors, then R is a division ring.

Proof. We assume R is non-zero and finite. So (R, \cdot) is a non-empty finite semigroup. We also assume R has no left zero divisors. Then by 3.1.11, the Left and Right Cancellation Laws hold in R. This means that for any non-zero $a, b, c \in R$,

$$
ab = ac \implies b = c, \\
ba = ca \implies b = c.
$$

We have satisfied the hypotheses of Problem 5 from Homework 1, and can therefore conclude that (R, \cdot) is a group. But if (R, \cdot) is a group then each element of R has a multiplicative inverse. Thus, R is a division ring, by definition. (Note that $1_R \neq 0_R$ because R is non-zero.) □

3

Proposition. $\mathbb{C}[Z_4] \cong \mathbb{C}[Z_2 \oplus Z_2]$.

Proof. Assume the order of the indices of $\mathbb{C}[Z_4]$ are $(0, 1, 2, 3)$ and the indices of $\mathbb{C}[Z_2 \oplus Z_2]$ are $((0,0), (0,1), (1,0), (1,1))$. **NOTATION:** for $c \in \mathbb{C}$, we will often write c in place of $(c,0,0,0)$.

Let

$$
x = (0, 1, 0, 0) \in \mathbb{C}[Z_4], \\
y = (0, 1 + i, 1 - i, 0) \in \mathbb{C}[Z_2 \oplus Z_2].
$$

It is readily verifiable that $x^4 = (1,0,0,0) \in \mathbb{C}[Z_4]$ and $y^4 = (1,0,0,0) \in \mathbb{C}[Z_2 \oplus Z_2]$. More specifically, x and y each have order 4 because $x^2 \neq x^4$ and $y^2 \neq y^4$. Define

$$
\phi : (x, c | c \in \mathbb{C}) \longrightarrow (y, c | c \in \mathbb{C}), \quad c_1 + c_2 x + c_3 y^2 + c_4 x^3 \longrightarrow c_1 + c_2 y + c_3 y^2 + c_4 y^3
$$

where $c_i \in \mathbb{C}$ for $1 \leq i \leq 4$. For $c_i, d_i \in \mathbb{C}, 1 \leq i \leq 4$, we have

$$
\phi((c_1 + c_2 x + c_3 x^2 + c_4 x^3) + (d_1 + d_2 x + d_3 x^2 + d_4 x^3)) = \phi((c_1 + d_1) + (c_2 + d_2)x + (c_3 + d_3)x^2 + (c_4 + d_4)x^3) \\
= (c_1 + d_1) + (c_2 + d_2)y + (c_3 + d_3)y^2 + (c_4 + d_4)y^3 \\
= c_1 + c_2 y + c_3 y^2 + c_4 y^3 + d_1 + d_2 y + d_3 y^2 + d_4 y^3 \\
= \phi(c_1 + c_2 x + c_3 x^2 + c_4 x^3) \phi(d_1 + d_2 x + d_3 x^2 + d_4 x^3).
$$

So ϕ is a homomorphism under addition.
Note that multiplication in \((x, c \mid c \in \mathbb{C})\) is essentially multiplication in \(\mathbb{C}[x]\) and multiplication in \((y, c \mid c \in \mathbb{C})\) is essentially multiplication in \(\mathbb{C}[y]\) (which is distinct from multiplication in \(\mathbb{C}[\mathbb{Z}_2 \oplus \mathbb{Z}_2]\)). Thus, we also have

\[
\phi((c_1 + c_2 x + c_3 x^2 + c_4 x^3)(d_1 + d_2 x + d_3 x^2 + d_4 x^3)) = \phi((c_1 d_1 + c_2 d_2 + c_3 d_3 + c_4 d_4) + (c_1 d_2 + c_2 d_1 + c_3 d_4 + c_4 d_3)x + (c_1 d_3 + c_2 d_2 + c_3 d_1 + c_4 d_4)x^2 + (c_1 d_4 + c_2 d_3 + c_3 d_2 + c_4 d_1)x^3) \\
= (c_1 d_1 + c_2 d_2 + c_3 d_3 + c_4 d_4) + (c_1 d_2 + c_2 d_1 + c_3 d_4 + c_4 d_3)y + (c_1 d_3 + c_2 d_2 + c_3 d_1 + c_4 d_4)y^2 + (c_1 d_4 + c_2 d_3 + c_3 d_2 + c_4 d_1)y^3 \\
= \phi(c_1 + c_2 x + c_3 x^2 + c_4 x^3)(d_1 + d_2 x + d_3 x^2 + d_4 x^3).
\]

So \(\phi\) is a homomorphism under multiplication.

Let \(c_1 + c_2 y + c_3 y^2 + c_4 y^3\) be an element from \((y, c \mid c \in \mathbb{C})\). Since \(c_1 + c_2 y + c_3 x^2 + c_4 x^3\) is an element in \((x, c \mid c \in \mathbb{C})\) and \(\phi(c_1 + c_2 x + c_3 x^2 + c_4 x^3) = c_1 + c_2 y + c_3 y^2 + c_4 y^3\), we know that \(\phi\) is surjective. Now, suppose \(c_1 + c_2 y + c_3 y^2 + c_4 y^3 = d_1 + d_2 y + d_3 y^2 + d_4 y^3\) in \((y, c \mid c \in \mathbb{C})\). This means \(c_i = d_i\) for \(1 \leq i \leq 4\). But the respective preimages under \(\phi\) are \(c_1 + c_2 x + c_3 x^2 + c_4 x^3\) and \(d_1 + d_2 x + d_3 x^2 + d_4 x^3\), which are obviously equal since \(c_i = d_i, 1 \leq i \leq 4\). Thus, \(\phi\) is injective.

We have now proven that \(\phi\) is an isomorphism between \((x, c \mid c \in \mathbb{C})\) and \((y, c \mid c \in \mathbb{C})\). We will use this to determine an isomorphism between \(\mathbb{C}[\mathbb{Z}_4]\) and \(\mathbb{C}[\mathbb{Z}_2 \oplus \mathbb{Z}_2]\).

Recall that \(x = (0, 1, 0, 0) \in \mathbb{C}[\mathbb{Z}_4]\). By the definition of group ring multiplication, we find

\[
x = (0, 1, 0, 0) \\
x^2 = (0, 0, 1, 0) \\
x^3 = (0, 0, 0, 1) \\
x^4 = (1, 0, 0, 0).
\]

It is necessarily the case that \((x, c \mid c \in \mathbb{C}) \subset \mathbb{C}[\mathbb{Z}_4]\). Let \((c_1, c_2, c_3, c_4) \subset \mathbb{C}[\mathbb{Z}_4]\). By the powers of \(x\) above, and part (b) of Problem 1, we know \((c_1, c_2, c_3, c_4) = c_1 x^4 + c_2 x + c_3 x^2 + c_4 x^3 \in (x, c \mid c \in \mathbb{C})\). Hence, \(\mathbb{C}[\mathbb{Z}_4] \subset (x, c \mid c \in \mathbb{C})\) and indeed \(\mathbb{C}[\mathbb{Z}_4] = (x, c \mid c \in \mathbb{C})\).

In \(\mathbb{C}[\mathbb{Z}_2 \oplus \mathbb{Z}_2]\), we have

\[
y = (0, \frac{1+i}{2}, \frac{1-i}{2}, 0) \\
y^2 = (0, 0, 0, 1) \\
y^3 = (0, \frac{1-i}{2}, \frac{1+i}{2}, 0) \\
y^4 = (1, 0, 0, 0).
\]

Calculations show that

\[
w := iy + \left(\frac{-1-i}{2}\right)(y + y^3) = (0, 1, 0, 0) \\
z := iy + \left(\frac{-1+i}{2}\right)(y + y^3) = (0, 0, 1, 0).
\]

Note that \(w, z \in (y, c \mid c \in \mathbb{C})\) because they are combinations of complex numbers and powers of \(y\). Now, it is obvious that \((y, c \mid c \in \mathbb{C}) \subset \mathbb{C}[\mathbb{Z}_2 \oplus \mathbb{Z}_2]\). Let \((c_1, c_2, c_3, c_4) \subset \mathbb{C}[\mathbb{Z}_2 \oplus \mathbb{Z}_2]\). It follows from the determinations above and Problem 1(b) that \((c_1, c_2, c_3, c_4) = c_1 y^4 + c_2 w + c_3 z + c_4 y^2\). Hence, \((c_1, c_2, c_3, c_4) \subset (y, c \mid c \in \mathbb{C})\) and \(\mathbb{C}[\mathbb{Z}_2 \oplus \mathbb{Z}_2] \subset (y, c \mid c \in \mathbb{C})\). Therefore, \(\mathbb{C}[\mathbb{Z}_2 \oplus \mathbb{Z}_2] = (y, c \mid c \in \mathbb{C})\).

Define

\[
\overline{\phi} : \mathbb{C}[\mathbb{Z}_4] \rightarrow \mathbb{C}[\mathbb{Z}_2 \oplus \mathbb{Z}_2], (c_1, c_2, c_3, c_4) \mapsto \phi(c_1 + c_2 x + c_3 x^2 + c_4 x^3).
\]

This is well-defined because a tuple from \(\mathbb{C}[\mathbb{Z}_4]\) uniquely determines an element of \((x, c \mid c \in \mathbb{C})\) and the image of an element under \(\phi\) is unique. Moreover, \(\overline{\phi}\) is an isomorphism because \(\phi\) is an isomorphism and \(\mathbb{C}[\mathbb{Z}_4] = (x, c \mid c \in \mathbb{C}), \mathbb{C}[\mathbb{Z}_2 \oplus \mathbb{Z}_2] = (y, c \mid c \in \mathbb{C})\). \(\Box\)
Let K be a field and G a finite group. We will determine

$$\text{Z}(K[G]) = \{(s_g)_{g \in G} \mid (s_g)_{g \in G} (r_g)_{g \in G} = (r_g)_{g \in G} (s_g)_{g \in G} \text{ for all } (r_g)_{g \in G} \in K[G]\}.$$

By the definition of a field, K is commutative and all non-zero elements are invertible. If G is abelian, then $K[G]$ is commutative by Problem 1(f) and $\text{Z}(K[G]) = K[G]$. So suppose G is not abelian. Recall from Problem 6(f) of Homework 2 that $\text{Z}(G) = \{h \in G \mid hg = gh \text{ for all } g \in G\}$, and note that $\text{Z}(G) \neq G$ because G is not abelian. CLAIM: $\text{Z}(K[G]) = A$ where A is the set of all $(a_g)_{g \in G}$ such that $a_h = a_k$ whenever h and k are conjugate in G. (Note that when $g \in Z(G)$ the conjugacy class of g is $\{g\}$.) Thus, there is really no stipulation on a_g for $g \in Z(G)$. Our strategy will be to show that $A \subseteq \text{Z}(K[G])$, and then to show that the complement of A is a subset of the complement of $\text{Z}(K[G])$. This will prove the claim.

Let $(a_g)_{g \in G} \in A$. This means $a_h = a_k$ whenever h and k are conjugate. Let $(r_g)_{g \in K[G]}$ and pick $g \in G$. We must show that $((a_g)_{g \in G} (r_g)_{g \in G})_g$ is equal to $((r_g)_{g \in G} (a_g)_{g \in G})_g$. By the definition of group ring multiplication,

$$((a_g)_{g \in G} (r_g)_{g \in G})_g = \sum_{(h,l) \in G \times G} a_h \cdot r_l, \quad (1)$$

$$((r_g)_{g \in G} (a_g)_{g \in G})_g = \sum_{(h,l) \in G \times G} r_h \cdot a_l. \quad (2)$$

Consider some summand $a_h r_l$ from (1). We have h and $l^{-1} h l$ conjugate in G because $h = l(l^{-1} h l)$. Thus, $a_h = a_{l^{-1} h l}$ by the definition of A. Now, h and l are paired indices from (1), so $hl = g$. Furthermore, $l(l^{-1} h l) = (l^{-1}) h l = h$. This means l and $l^{-1} h l$ are paired indices and $r_l a_{l^{-1} h l}$ must appear in (2). But $r_l = r_l$ and $a_h = a_{l^{-1} h l}$, and since K is commutative, we have $a_h r_l = r_l a_{l^{-1} h l}$. This means every summand from (1) also appears in (2) and thus (1)=(2). Since g was an arbitrary coordinate, it follows that every coordinate is equal and in fact

$$(a_g)_{g \in G} (r_g)_{g \in G} = (r_g)_{g \in G} (a_g)_{g \in G}.$$

Therefore, $(a_g)_{g \in G} \in \text{Z}(K[G])$ and $A \subseteq \text{Z}(K[G])$.

Let $(a_g)_{g \in G}$ be such that $a_h \neq a_k$ for some h and k conjugate in G; that is, $(a_g)_{g \in G} \notin A$. We must show that $(a_g)_{g \in G}$ does not commute with some element of $K[G]$; that is, $(a_g)_{g \in G} \notin \text{Z}(K[G])$. We are assuming h and k are distinct, which means the conjugacy class of h contains at least two elements, and so $h \notin Z(G)$. Thus, there exists $l_h \in G$ such that $hl_h \neq l_h h$. Put $g_h = hl_h$.

Consider $(r_g)_{g \in G} \in K[G]$ where

$$r_g = \begin{cases} a_k & g = h \\ a_g & g \neq h. \end{cases}$$

In other words, $(r_g)_{g \in G}$ is identical to $(a_g)_{g \in G}$ except that $r_h = r_k = a_k$. Now we look at

$$((a_g)_{g \in G} (r_g)_{g \in G})_{g_h} = \sum_{(h,l) \in G \times G} a_h \cdot r_l, \quad (3)$$

$$((r_g)_{g \in G} (a_g)_{g \in G})_{g_h} = \sum_{(h,l) \in G \times G} r_h \cdot a_l. \quad (4)$$

Let $a_h r_l$ be a summand from (3) with $h_i \neq h$, $l_i \neq l$. Then $r_h a_l$ necessarily appears as a summand in (4). But $a_h = r_h$, and $a_i = r_i$ by the construction of $(r_g)_{g \in G}$. Hence, $a_h r_l = r_h a_l$. So we see that most of the summands from (3) and (4) are equal. However, consider $a_h r_{l_h}$ from (3) and $r_{l_h} a_{l_h}$ from (4). We claim that $a_h r_{l_h} \neq r_{l_h} a_{l_h}$.
By construction, \(r_l = a_l \), so we may reframe the question in terms of \(a_h a_l \) and \(r_h a_l \). Suppose the claim is false and \(a_h a_l = r_h a_l \). Since \(K \) is a field, \(a_l^{-1} \) exists and we have
\[
a_h a_l a_l^{-1} = r_h a_l a_l^{-1}.
\]
But this implies \(a_h = r_h \) which is a contradiction because \(r_h = a_k \) and \(a_h \neq a_k \) by assumption. Therefore, the claim is true and \(a_h r_l \neq r_h a_l \). Since all the other summands are equal, this single unequal pair of summands means
\[
((a_g)_{g \in G} (r_g)_{g \in G})_g \neq ((r_g)_{g \in G} (a_g)_{g \in G})_g,
\]
and consequently
\[
(a_g)_{g \in G} (r_g)_{g \in G} \neq (r_g)_{g \in G} (a_g)_{g \in G}.
\]
Since \((a_g)_{g \in G} \) does not commute with all elements of \(K[G] \), it follows that \((a_g)_{g \in G} \not\in Z(K[G]) \).

Having proven both inclusions, we know \(Z(K[G]) = A \), where \(A \) is the set of all \((a_g)_{g \in G} \) such that \(a_h = a_k \) whenever \(h \) and \(k \) are conjugate in \(G \).

5

Proposition. Let \(R \) be a commutative ring and let \(I \) be the set of nilpotent elements in \(R \). Then
(a) \(I \) is an ideal in \(R \), and
(b) \(R/I \) has no non-zero nilpotent elements.

Proof. (a) Recall from the definition of nilpotent that \(a \in I \) if \(a^n = 0_R \) for some \(n \in \mathbb{Z}^+ \). Let \(r \in R \). We must show that \(rI \subseteq I \). So we choose \(ri \in rI \) and consider \((ri)^n \) where \(n \) is such that \(ri^n = 0_R \). Then, since \(R \) is commutative,
\[
(ri)^n = (ri)(ri) \ldots (ri) = \underbrace{rr \ldots r}_{n \text{-times}} \underbrace{ii \ldots i}_{n \text{-times}} = r^n i^n.
\]
Furthermore, \((ri)^n = r^n 0_R = 0_R \) because \(i^n = 0_R \) by the choice of \(n \). Thus, by the definition of a nilpotent element and the definition of \(I \), \(ri \in I \). This means \(rI \subseteq I \) and \(I \) is an ideal in \(R \).

(b) We know from group theory (2.5.5(c)) that \(I \) is the identity element of \(R/I \) with respect to addition, so \(I \) is called the “zero element” of \(R/I \). Let \(A \in R/I \) with \(A \neq I \). We must show that \(A^n \neq I \) for any \(n \in \mathbb{Z}^+ \).

Note that congruence modulo \(I \) is an equivalence relation, so \(R/I \) is a partition of \(R \) and \(A \) and \(I \) are necessarily disjoint. Since all nilpotent elements are in \(I \), there are no nilpotent elements of \(R \) in \(A \). Now, choose \(n \in \mathbb{Z}^+ \). Then by 3.2.7(c),
\[
A^n = \langle a_1 a_2 \ldots a_n \mid a_i \in A, 1 \leq i \leq n \rangle.
\]
Choose \(a \in A \). Then clearly \(a^n \in A^n \). Suppose \(a^n \in I \), that is, \(a^n \) is nilpotent. Then \((a^n)^m = 0_R \) for some \(m \in \mathbb{Z}^+ \). But this implies \(a^{nm} = 0_R \) and we noted that \(a \) is not nilpotent—a contradiction. Therefore, \(a^n \) is not nilpotent and \(a^n \not\in I \). Thus, an element of \(A^n \) is not in \(I \) and so \(A^n \neq I \). This means \(A \) is not a nilpotent element of \(R/I \). \(\Box \)
Let R be a ring with identity and denote 1_R by 1 and 0_R by 0. Let $S = M_{nn}(R)$ and let I be a particular ideal in S. For $A \in S$, let A_{ij} be the entry of row i, column j in A. Let $J = \{ A_{11} \mid A \in I \}$. (See attachment for explicit matrices throughout.)

(a) We will show that J is an ideal in R; that is, $rJ \subseteq J$ for any $r \in R$. Choose $r \in R$ and $j \in J$. It will suffice to show that $rj \in J$.

By the definition of J, there is $A \in I$ with $A_{11} = j$. Let M be the matrix in S with

$$M_{ij} = \begin{cases} r & i = j = 1 \\ 0 & i \neq 1 \text{ or } j \neq 1. \end{cases}$$

Consider MA. We see that $(MA)_{11} = rj + 0 + 0 + \ldots + 0 = rj$. Since I is an ideal and $A \in I$, we have $MA \in I$. Hence, rj is the entry in row 1, column 1 of an element of I. It follows that $rj \in J$. So J is an ideal in R.

(b) Let $E^{rs} \in S$ be the matrix with 1 in row r, column s and 0 everywhere else. Let $A \in S$ and $1 \leq p, q, r, s \leq n$. We will show that $E^{pr}AE^{sq} = A_{rs}E^{pq}$.

First, consider AE^{sq}. If $j \neq q$ then column j of E^{sq} is entirely 0, so column j of AE^{sq} is composed of $A_{ij}0 + A_{j2}0 + \ldots + A_{jn}0 = 0$ for each row $1 \leq i \leq n$. In other words, column j of AE^{sq} is entirely 0 if $j \neq q$. Now, for column q in AE^{sq} we have

$$A_{11}0 + A_{21}0 + \ldots + A_{1n}1 + \ldots + A_{in}0 = A_{is}$$

for each row $1 \leq i \leq n$. In other words, column s of A is column q of AE^{sq} and AE^{sq} is 0 everywhere else.

Define $B = AE^{sq}$. We must multiply $E^{pr}B$. If $i \neq p$ then row i of E^{pr} is entirely 0, so row i of $E^{pr}B$ is composed of $0B_{1j} + 0B_{2j} + \ldots + 0B_{nj} = 0$ for each column $1 \leq j \leq n$. In other words, row i of $E^{pr}B$ is entirely 0 if $i \neq p$. Now, for row p in $E^{pr}B$ we have

$$0B_{1j} + 0B_{2j} + \ldots + 1B_{rj} + \ldots + 0B_{nj} = 1B_{rj}$$

for each column $1 \leq j \leq n$. But $B_{rj} = 0$ when $j \neq q$, so row p is entirely 0 except in column q. When $j = q$, $B_{rq} = A_{rs}$ because of our determination of B above. Thus we have row p, column q of $E^{pr}B$ equal to A_{rs}. This proves that

$$E^{pr}A^{sq} = E^{pr}B = A_{rs}E^{pq}.$$

(c) Let $A \in I$ and $1 \leq i, j \leq n$. We will show that A_{ij} is an element of J.

Since $A \in I$, $A_{11} \in J$ by the definition of J. Since I is an ideal, $AE^{11} \in I$ and also $E^{11}(AE^{11}) \in I$. This means the entry in row 1, column 1 of $E^{11}AE^{11}$ is in J. But we showed in part (b) that this product of matrices takes A_{ij} and places it in row 1, column 1 in the product matrix (using 1 and 1 in place of p and q). Therefore, A_{ij} is in row 1, column 1 of $E^{11}AE^{11}$. It follows that $A_{ij} \in J$.

(d) We will show that I equals the set of $n \times n$ matrices with coefficients in J.

Let $A \in I$. We showed in part (c) that every entry of A is an element of J. Thus, $A \in M_{nn}(J)$ and we have $I \subseteq M_{nn}(J)$. Let $B \in M_{nn}(J)$. So every entry in B is from J, which means by the definition of J that for all $1 \leq i, j \leq n$ there exists an $A^{ij} \in I$ such that $A_{ij}^{11} = B_{ij}$. Note that $MA^{ij} \in I$ and $A^{ij}M \in I$ for all $M \in S$ because I is an ideal. And since I is a subring, it is closed under addition. This will allow us to construct the matrix B while remaining in I, which will prove that $B \in I$ and $M_{nn}(J) \subseteq I$.

Consider

$$B^* = \sum_{1 \leq i, j \leq n} E^{11}A^{ij}E^{1j}.$$

Each summand is in I because $A^{ij} \in I$ and I is an ideal, so $B^* \in I$. Let us look at row i, column j of B^*. By part (b), the product $E^{1i}A^{ij}E^{1j}$ takes A_{11}^{ij} and places it in row i, column j of B^* (the sum does not alter this fact because the corresponding entries in the other summands are 0). But A_{11}^{11} was defined to be B_{ij}. Hence, $B_{ij}^* = B_{ij}$ for all $1 \leq i, j \leq n$ and $B^* = B$. This means $B \in I$ and $M_{nn}(J) \subseteq I$. Therefore, $I = M_{nn}(J)$.

8
Proposition. Let D be a division ring and $n \in \mathbb{Z}^+$. Then $M_{nn}(D)$ is a simple ring.

Proof. Let I be an ideal in $S = M_{nn}(D)$ with $I \neq \{0_S\}$, where 0_S is the $n \times n$ matrix with all entries 0_D. We must show that I is necessarily the entire ring S.

The fact that $I \neq \{0_S\}$ means there is $A \in I$ with $A_{ij} = a$ for some $1 \leq i, j \leq n$ and $0_D \neq a \in D$. By part (b) of Problem 6, we know that $B = E_{1i}^1A_{ij}^1$ takes $A_{ij} = a$ and puts it in B_{11}. All other entries of B are 0_D. But $A \in I$ and I is an ideal, so $B \in I$. If we define $J = \{A_{11} \mid A \in I\}$, then we see $a = A_{11} = B_{11} \in J$.

Since D is a division ring and a is non-zero, $a^{-1} \in D$. Consider the matrix $C \in S$ with $C_{11} = a^{-1}$ and all other entries 0_D. Now, $B \in I$ so $CB \in I$. The entry in row 1, column 1 of CB is $(a^{-1}a) + 0_D + 0_D + \ldots + 0_D = 1_D$. This means $1_D \in J$. (It is also obvious that $0_D \in J$ because $0_S A \in I$ and the 11-entry is 0_D.) We saw in part (d) of Problem 2 that $I = M_{nn}(J)$. Since $1_D, 0_D \in J$, the $n \times n$ identity matrix is necessarily an element of I because all of its entries are from J. Let M be any matrix in S. Then the product of M and the identity matrix is in I by the definition of an ideal, so $M \in I$. Thus, $S = I$.

It follows that the only ideals of S are the trivial ones, so $S = M_{nn}(D)$ is simple. □