Topology Homework 4

Section 3.4 - Section 4.1

Samuel Otten

3.4

(5)

Proposition. Let τ and τ' be topologies on X. Define $S = \tau \cap \tau'$ and $S' = \tau' \cup \tau'$, and let τ_1 be the topology determined by the subbasis S and τ_2 be the topology determined by the subbasis S'. Then τ_1 is the finest topology which is coarser than both τ and τ', and τ_2 is the coarsest topology which is finer than τ and τ'.

Proof. We know that $\tau_1 \subset \tau$ and $\tau_1 \subset \tau'$ by Proposition 5 of the text. This means τ_1 is coarser than both τ and τ'. Suppose τ^* is another topology coarser than both; that is, $\tau^* \subset \tau$ and $\tau^* \subset \tau'$. Let U^* be an open set in τ^*. Then $U^* \in \tau$ and $U^* \in \tau'$. Thus, $U^* \in \tau \cap \tau' \subset \tau_1$, which implies $\tau^* \subset \tau_1$. So we see that τ_1 is finer than any other topology which is coarser than τ and τ'.

We know that $\tau \subset \tau_2$ and $\tau' \subset \tau_2$, so τ_2 is finer than both τ and τ'. Suppose τ^* be another topology finer than both; that is, $\tau \subset \tau^*$ and $\tau' \subset \tau^*$. Let U_2 be an open set in τ_2. Then $U_2 \in \tau$ or $U_2 \in \tau'$. Either case implies $U_2 \in \tau^*$, so $\tau_2 \subset \tau^*$. So τ_2 is coarser than any other topology which is finer than τ and τ'. □

(8) On a set X, let \mathcal{B} and \mathcal{B}' be bases for topologies τ and τ', respectively. Suppose that each member of \mathcal{B}' contains a member of \mathcal{B}. It is not necessarily the case that τ and τ' are comparable.

Consider the following counterexample. Let $X = \{a, b, c\}$ and let the bases $\mathcal{B} = \{X, \{a\}\}$, $\mathcal{B}' = \{X, \{a, b\}\}$. Observe that X contains X and $\{a, b\}$ contains a, so each $B' \in \mathcal{B}'$ contains a $B \in \mathcal{B}$. The topologies determined by these bases are the bases themselves, $\tau = \mathcal{B}$ and $\tau' = \mathcal{B}'$. However, these topologies are not comparable because $\{a\}$ is open in τ but not in τ' and $\{a, b\}$ is open in τ' but not in τ. Thus, neither is a subset of the other and we cannot discuss their relative coarseness or fineness.

3.5

(1) Let (X, τ) be a topological space and let A and B be any two subsets of X. We will show that it is not generally the case that $A \cap B = A \cap B$.

Consider $X = \mathbb{R}^2$ and $A = \{(x, y) | y > 0\}$, $B = \{(x, y) | y < 0\}$. Then $A \cap B = \emptyset$ and $A \cap B = \{(x, y) | y = 0\} = \emptyset$. But $A \cap B = \{(x, y) | y = 0\} \neq \emptyset$.

(4) Let (X, τ) and (X, τ') be topological spaces with $\tau' \subset \tau$. Derived sets will be notated with $'$ if they are with respect to τ', otherwise they are with respect to τ.

a) $\overline{A} \subset \overline{A}'$ - Let $x \in \overline{A}$. This means $x \in C$ for all closed sets C with respect to τ containing A. But all C' closed with respect to τ' correspond to some C with respect to τ because τ' is coarser than τ. So $x \in C'$ for all closed sets containing A. Thus, by definition, $x \in \overline{A}'$. So $\overline{A} \subset \overline{A}'$.

b) $A^o \subset A^o'$ - Let $x \in A^o$. This means x is in some open set with respect to τ' that is contained within A. But all open sets in τ' are also open sets in τ. So x is necessarily in an open set with respect to τ that is contained within A. Thus, $x \in A^o$ and $A^{o'} \subset A^o$.

1
c) Ext′A ⊂ ExtA - The exterior of a set is the complement of its closure. Since $\overline{A} \subset \overline{A}'$, it follows that $X - \overline{A}' \subset X - \overline{A}$.

d) FrA ⊂ Fr′A - Let $x \in FrA$. By definition, all open sets in τ containing x meet both A and $X - A$. Note that A and $X - A$ are the same with respect to τ and τ'. Since τ' contains no open sets other than those in τ, there can be no new set containing x that is open with respect to τ'. Hence, all open sets with respect to τ' containing x meet both A and $X - A$. So $x \in Fr'\!A$.

(7) Though it seems counterintuitive, it is possible for two distinct subsets of a topological space to have exactly the same topologically derived sets.

Consider $A = (0, 1)$ and $B = [0, 1]$ in the topology induced by the absolute value metric on \mathbb{R}. We see that $\overline{A} = [0, 1] = \overline{B}$, $A^0 = (0, 1) = B^0$, Ext$A = (-\infty, 0) \cup (1, \infty) = ExtB$, and Fr$A = \{0, 1\} = FrB$. So the derived sets are equal, but A is clearly distinct from B.

3.6

(4) Let \mathbb{R}^2 be the coordinate plane with the topology induced by the Pythagorean metric. Let $A = \{(x, y) \mid x, y \in \mathbb{Q} \text{ and } x^2 + y^2 < 1\}$. We will determine several derived sets. Note that $x, y \in \mathbb{R}$ unless otherwise indicated.

a) Fr\overline{A} = $\{(x, y) \mid x^2 + y^2 = 1\}$. The closure of A is the closed real unit disc because the rational unit disc is not closed. Clearly, the frontier of the real unit disc is the unit circle.

Fr\overline{A} = $\{(x, y) \mid x^2 + y^2 \leq 1\}$. The frontier of A is the closed real unit disc because all neighborhoods around these points will meet both rationals (A) and irrationals ($X - A$). This is a closed set, so its closure is itself.

b) Fr A' = $\{(x, y) \mid x^2 + y^2 = 1\}$. The weak derived set of A is the closed real unit disc because all of these points will have neighborhoods which intersect A. This frontier, then, is the same as part (a).

(4 Fr A') = $\{(x, y) \mid x^2 + y^2 \leq 1\}$. As noted, the frontier of A is the closed real unit disc. The weak derived set of this is the unit circle because there are no separated singletons, so it is the same as the closure.

c) (\overline{A})0 = $\{(x, y) \mid x^2 + y^2 < 1\}$. We know \overline{A} is the real unit disc including its boundary. Thus, its interior is the real unit disc without the boundary.

$\overline{A}^0 = \phi$. The interior of A is the union of all open sets contained in A. However, all open sets containing points in A will also contain irrational points within the unit disc. Thus, the interior is empty. The smallest closed set containing ϕ is ϕ.

Let $B = \{(x, y) \mid y = 0\}$. Then Fr$\overline{B}$ = $B = Fr\overline{B}$, Fr B' = $B = (Fr B)'$, and (\overline{B})$^0 = \phi = \overline{B}^0$.

4.1

Let τ be the topology induced on \mathbb{R} by the absolute value metric. We will show that the following subsets of \mathbb{R} have subspace topologies that are not the discrete topology. Define $Z = \{0\}$ and τ' to be the subspace topology of the respective subsets.

a) $\mathbb{Q} \subset \mathbb{R}$. Clearly, Z is a subset of \mathbb{Q}. Suppose that $U \in \tau$ existed so that $Z = \mathbb{Q} \cap U$. Since U is open it must contain a neighborhood in \mathbb{R} around 0, but any such neighborhood would contain other rationals because \mathbb{Q} is dense. Thus, $Z \neq \mathbb{Q} \cap U$ and we conclude that $Z \notin \tau'$. This means τ' is not the discrete topology because it does not contain every subset of \mathbb{Q}.

b) $A = \{x \mid x = 0 \text{ or } x = 1/n, n \in \mathbb{N}\}$. We see that $Z \subset A$. Suppose that $U \in \tau$ existed so that $Z = \mathbb{Q} \cap U$. Again, since U is open it must contain a neighborhood in \mathbb{R} around 0, but any such neighborhood would contain infinitely many elements of A because A considered as a sequence converges to 0. Thus, U does not exist and $Z \notin \tau'$. So τ' is not the discrete topology.
c) \(B = \{ x \mid x = q\pi, q \in \mathbb{Q} \} \). Note that \(Z \subset B \). The set \(U \in \tau \) cannot exist such that \(Z = B \cap U \) because \(U \) must contain a neighborhood \(N(0,p) \) for \(p > 0 \), but there is a \(q_1 \in \mathbb{Q} \) such that \(q_1\pi \in N(0,p) \) for any \(p > 0 \). Therefore, \(Z \notin \tau' \) and \(\tau' \) is not the discrete topology.

d) In general, any subset of \(\mathbb{R} \) that is somewhere dense will have a subset topology that is not the discrete topology. Let \(C \) be any such subset. Consider a singleton set \(\{ s \} \) from the dense region of \(C \). Then any \(U \in \tau \) containing \(s \) would have to contain \(N(s,p) \) where \(p > 0 \). But \(N(s,p) \) would intersect other elements of \(C \) near \(s \) because \(C \) is dense in this region. Thus, \(\{ s \} \neq C \cap U \) and \(\{ s \} \) is not open in \(\tau' \). Since the discrete topology has every subset open, the subspace topology is not the discrete topology.

(6) The following claim is false: A subset \(A \) of a topological space is nowhere dense if and only if the subspace \(A \) has the discrete topology. The backward direction fails. Consider \(A = X \) where \(X \) is any topological space with the discrete topology \(\tau \). By Example 3 of the text, the subspace \(A \) must also have the discrete topology. Thus, we have fulfilled the hypothesis of the backward direction. Now, \(\overline{A} = A \) because \(A \) is itself a closed set. But \(A = X \), so by definition, \(A \) is dense.