Homework 10

Section 2.1

Proposition A \(H_0(X, A) = 0 \) if and only if \(A \) meets each path-component of \(X \).

Proof: We begin with a fact that will be used later several times:

Let \(B \) be a path-component of \(X \) and \(b_1, b_2 \in B \). Then there exists a path \(\gamma \) from \(b_1 \) to \(b_2 \). So \(\gamma \) is a singular 1-simplex with \(\partial \gamma = b_2 - b_1 \). Hence \([b_1] = [b_2]\) in \(H_0(X)\). More generally, there is one homology class of \(H_0(X) \) for each path-component of \(X \).

(\(\Rightarrow\)) By theorem A (3/4), there exists a long exact sequence:

\[\cdots \rightarrow H_0(A) \overset{i_*}{\rightarrow} H_0(X) \overset{j_*}{\rightarrow} H_0(X, A) \rightarrow \cdots \rightarrow \]

We assume \(H_0(X, A) = 0 \). Hence \(\text{im } j_* = 0 \) and \(\text{ker } j_* = H_0(X) \) because everything must be sent to 0. By exactness, \(\text{im } i_* = \ker j_* = H_0(X) \) so we see that \(i_* \) is surjective. So the injection \(i \) induces a homomorphism \(i_* \) that reaches all homology classes of \(H_0(X) \), and thus by (\(\ast\)), all path-components of \(X \).

(\(\Leftarrow\)) Let \([\alpha] \in H_0(X)\) and assume \([\alpha] = [\beta] \) for some \(\beta \in A \). We have \(i_\alpha(\alpha) = [\alpha] = [\beta] \). Thus \(i_\alpha \) is surjective. So \(\text{im } i_\alpha = H_0(X) \) and by exactness \(H_0(X) = \ker j_* \). This means \(j_* \) is injective. So \(\text{im } j_* \rightarrow O \); that is, \(\text{im } j_* = 0 \). By exactness, the kernel of the map from \(H_0(X, A) \) to \(O \) is \(\text{im } j_* = 0 \). So \(H_0(X, A) \rightarrow O \) is an injective map, implying \(H_0(X, A) = 0 \).

Proposition B \(H_1(X, A) = 0 \) if and only if \(i: H_1(A) \rightarrow H_1(X) \) is surjective and each path-component of \(X \) contains at most one path-component of \(A \).

Proof: (\(\Rightarrow\)) Assume \(H_1(X, A) = 0 \). So we have the long exact sequence:

\[\cdots \rightarrow H_1(A) \overset{i_*}{\rightarrow} H_1(X) \overset{j_*}{\rightarrow} H_1(X, A) \rightarrow \cdots \rightarrow \]

We see that \(\ker j_* = H_1(X) \) and so \(\text{im } i_* = H_1(X) \). Hence \(i_* \) is surjective. Since \(\text{im } j_* = 0 \) we get \(\ker j_* = 0 \) and hence \(j_* \) is injective.

Now suppose to the contrary that \(A_0 \) and \(A_1 \) are two path-components of \(A \) that are contained in a path-component \(X_0 \) of \(X \). We know that \(H_1(A) \) is the direct sum of the homology groups of its path-components. So let

\[
\begin{align*}
I_x & : H_0(A) \oplus H_0(A) \rightarrow H_0(X), \\
\text{where } \triangleleft H_0(X)
\end{align*}
\]
By (**) every point in \(X_0 \) represents the same homology class in \(H_0(X) \) while points in \(A_0 \) and \(A_1 \) represent distinct homology classes in \(H_0(A_0) \oplus H_0(A_1) \). This implies \(I_x \) is not injective when restricted to \(A_0 \) and \(A_1 \), and so \(I_x \) is not injective overall — a contradiction. Therefore, a path-component of \(X \) can contain at most one path-component of \(A \).

\(\Leftarrow \) Assume \(I_x \) is surjective and there is at most one path-component of \(A \) in any path-component of \(X \). Let \([a, \bar{a}] \in H_0(A) \). If \(I_x([a, \bar{a}]) = I_x([\bar{a}, a]) \) then by (**) \(I(a) = a \) and \(I(\bar{a}) = \bar{a} \) lie in the same path-component of \(X \). Since \(a, \bar{a} \in A \) and only one path-component of \(A \) can be contained in this particular path-component of \(X \), \(a \) and \(\bar{a} \) must also be in the same path-component of \(A \). Thus (**) gives \([a, \bar{a}] = [\bar{a}, a] \) in \(H_0(A) \). This means \(I_x \) is injective, and it follows that \(\ker I_x = 0 \).

By exactness, \(\ker \partial = 0 \). We assumed \(\text{im } I_x \cong H_1(X) \) and hence \(\ker j_x = H_1(X) \). Since the kernel of \(j_x \) is the entire domain, \(\text{im } j_x = 0 \). By exactness, \(\ker \partial = 0 \). Putting it all together, \(\text{im } \partial = \ker \partial = 0 \) so necessarily \(H_n(X,A) = 0 \). \(\square \)

17. We will compute the homology groups \(H_n(X,A) \) when \(X = S^2 \) and \(A \) is a finite set of points.

Recall that \(H_n(S^2) = \{0\} \) if \(n \neq 0 \). We also know \(H_n(A) = \{0\} \) if \(n > 0 \) where \(k \) is the number of points in \(A \). By theorem A (34) we have

\[
\cdots \longrightarrow H_n(X) \longrightarrow H_n(X,A) \longrightarrow H_n(A) \longrightarrow H_{n-1}(X) \longrightarrow H_{n-1}(X,A) \longrightarrow H_{n-1}(A) \longrightarrow \cdots
\]

Substituting what we know gives

\[
\cdots \longrightarrow 0 \longrightarrow H_n(X,A) \longrightarrow 0 \longrightarrow 0 \longrightarrow H_n(X,A) \longrightarrow Z^k \longrightarrow \cdots
\]

Since \(A \) meets each path-component of \(X \), \(H_n(X,A) = 0 \) by \(\# \text{le}(A) \). Within the long exact sequence above we now have the short exact sequence

\[
0 \longrightarrow H_n(X,A) \longrightarrow Z^k \longrightarrow \cdots \longrightarrow 0
\]

From an example in class (34) we know that \(Z \cong \mathbb{Z}/H_n(X,A) \). It follows that \(H_n(X,A) \cong \mathbb{Z}^{k-1} \). From the long exact sequence we conclude that \(\text{im } j_x = 0 \) for \(j_x : 0 \longrightarrow Z^k \) and so \(\ker j_x = 0 \) for \(j_x : Z \longrightarrow H_n(X,A) \). Note that \(\text{im } j_x = \ker \partial = H_0(X,A) \), so by the first isomorphism theorem \(H_0(X,A) \) is isomorphic to \(\mathbb{Z}^{k-1} \). Finally, \(H_n(X,A) = 0 \) for \(n \geq 3 \) because we have \(\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow H_1(X,A) \longrightarrow 0 \longrightarrow \cdots \) and \(0 = \text{im } j_x = \ker \partial = 0 \).

Since \(\text{im } \partial = 0 \) also, it must be the case that \(H_n(X,A) = 0 \).
We will compute the homology groups \(H_n(X, A) \) when \(X = S^1 \times S^1 \) and \(A \) is a finite set of points.

Recall that

\[
H_n(S^1 \times S^1) = \begin{cases}
\mathbb{Z} & \text{if } n = 0, 2 \\
\mathbb{Z}^2 & \text{if } n = 1 \\
0 & \text{if } n \geq 3.
\end{cases}
\]

So we have a long exact sequence

\[
\cdots \to 0 \to H_2(X, A) \to \mathbb{Z} \to H_2(X, A)^2 \to 0 \to \mathbb{Z} \to H_1(X, A) \to \mathbb{Z} \to H_0(X, A) \to 0.
\]

Again by \(\#(A), H_0(X, A) = 0 \) and for the same reason as before, \(H_n(X, A) = 0 \) for \(n \geq 3 \). If we consider the sequence in reduced homology, we see a short exact sequence

\[
0 \to \mathbb{Z}^2 \to H_1(X, A) \to \mathbb{Z} \to 0.
\]

So we know \(\mathbb{Z}^2 \cong H_1(X, A) / \mathbb{Z} \) and hence \(H_1(X, A) \cong \mathbb{Z}^{k+1} \). If we look back at the original long exact sequence, we see \(\ker \beta = H_2(X, A) \) and so also \(\text{im } j_\beta = H_2(X, A) \). By the first isomorphism theorem, \(H_2(X, A) \) is isomorphic to \(\mathbb{Z} / \ker j_\beta = \mathbb{Z} / 0 = \mathbb{Z} \), because \(0 = \text{im } j_\beta = \ker j_\beta \).

b. We will compute the homology groups \(H_n(X, A) \) and \(H_n(X, B) \) with \(X, A, \) and \(B \) as shown. At various points we will use theorem B (36).

\[
\begin{align*}
H_n(X, A) & = H_n(X, B) \\
\end{align*}
\]

since \((X, A) \) is a good pair.

By \(\#(A), H_0(X, A) = 0 \). By the theorem from (34), \(H_1(X, A) \) is the abelianization of \(\pi_1(X, A) \). Note that \(X/A \) is the wedge sum of two tori, so \(\pi_1(X/\sim) \cong \mathbb{Z}^4 \). The abelianization of \(\pi_1(X, A) \) is \(H_1(X, A) \cong \mathbb{Z}^4 \).

Consider the chain complex

\[
\cdots \to 0 \to C_2(X, A) \xrightarrow{\partial_2} C_1(X, A) \xrightarrow{\partial_1} C_0(X, A) \xrightarrow{\partial_0} 0.
\]

There are no 3-simplices, so \(C_3(X, A) = 0 = \text{im } \partial_3 \). We have \(C_0(X, A) = \langle L, R \rangle \) and \(\partial_1 L = \partial_1 R = 0 \). Hence \(\ker \partial_2 = \langle L, R \rangle \), and

\[
H_2(X, A) = \ker \partial_2 / \text{im } \partial_3 \cong \langle L, R \rangle / 0 \cong \mathbb{Z}^2.
\]

Since \(C_n(X, A) = 0 \) for \(n \geq 3 \), we get

\[
H_n(X, A) = 0 \quad \text{for } n \geq 3.
\]
Note that X/B is homeomorphic to a torus with two points identified. So the hypotheses of \(\pi_1(x,x_0) \) are fulfilled \((k=2)\) and we conclude that \(H_2(X/B) = \mathbb{Z} \), \(H_1(X/B) = \mathbb{Z}^2 \), \(H_0(X/B) = 0 \) for \(n \geq 3 \).

We will compute the homology groups of X, the subspace of $I \times I$ consisting of the four boundary edges plus all points in the interior whose first coordinate is rational.

First, observe that X is path-connected. Let \((a,b), (c,d) \in X\). Then the path composed of the line segments \((a,b) \rightarrow (b,c) \rightarrow (c,d)\) lies entirely within X and goes from \((a,b)\) to \((c,d)\). Thus \(H_0(X) = \mathbb{Z} \).

Consider the chain complex $\cdots \rightarrow C(X) \xrightarrow{d_2} C(X) \xrightarrow{d_2} C(X) \rightarrow 0$. There are no n-simplices for $n \geq 2$ so \(C_n(X) = 0 \) and \(H_n(X) = 0 \) for $n \geq 2$. For \(C_1(X) \), there are a countably infinite number of generators — one for each rational in I — so \(C_1(X) \cong \mathbb{Z}^\mathbb{Q} \). Thus \(\text{ker } d_1 = \mathbb{Z}^\mathbb{Q} \). There are also \(\mathbb{Z} \) generating cycles in X so \(\mathbb{Z}^\mathbb{N} \leq \text{ker } d_1 \) on the level of cardinality. So by definition \(H_1(X) = \frac{\text{ker } d_1}{\text{im } d_1} \cong \mathbb{Z}^{\mathbb{Q} / \mathbb{Z}} = \mathbb{Z}^\mathbb{Q} \).

Proposition A. If X is a finite CW complex with dimension n, then $H_i(X) = 0$ for $i > n$ and $H_n(X)$ is a free abelian group.

Proof. We will induct on n. Base Case: if $n = 0$ then $H_i(X) = 0$ for $i > 0$ because $C_i(X) = 0$. Also, $H_0(X) = \mathbb{Z}^k$ where k is the number of 0-cells (or components, in this case). We have \(\mathbb{Z}^k \), a free abelian group.

Inductive Case: Assume for any finite $(n-1)$-dimensional CW complex Y that $H_i(Y) = 0$ for $i > n-1$ and $H_n(Y)$ is a free abelian group.

With regard to X, there are no i-cells for $i > n$ and so $C_i(X) = 0$ and consequently $H_i(X) = 0$. (By Hatcher's remark, we can view X/X^{n-1} as a wedge, and so a Δ-complex.)
Note that by definition \((\forall n)\), \(X^0 = X^1\) and \(X^{n-1} \subseteq X^n\). We have a long exact sequence.

\[\cdots \rightarrow H_n(X^{n-1}) \rightarrow H_n(X^n) \rightarrow H_n(X^{n-1}) \rightarrow H_n(X^n) \rightarrow H_n(X^{n-1}) \rightarrow \cdots\]

which we can rewrite using the inductive hypothesis and our new knowledge as

\[\cdots \rightarrow 0 \rightarrow 0 \rightarrow H_{n+1}(X^{n-1}) \rightarrow 0 \rightarrow H_n(X^n) \rightarrow j_*H_n(X^{n-1}) \rightarrow G \rightarrow \cdots\]

where \(G\) is a free abelian group.

Now \(\text{im } \iota_n = 0\) and by exactness \(\ker j* = 0\). Thus, the First Isomorphism Theorem gives

\[\text{im } j* = H_n(X^n) / \ker j* = H_n(X^n) / 0 = H_n(X^n).\]

Since \(\text{im } j* = \ker D\), we get \(H_n(X^n) \cong \ker D\). But \(\ker D\) is a subgroup of \(G\) because it is the kernel of a homomorphism, and any subgroup of a free abelian group is free abelian. Therefore, \(\ker D = H_n(X^n)\) is a free abelian group.

\[\square\]

\[\checkmark\] If there are no cells of dimension \((n-1)\) or \((n+1)\), then \(H_n(X)\) is free with basis in bijective correspondence with the \(n\)-cells.

Let \(k\) be the number of \(n\)-cells. The chain complex

\[\cdots \rightarrow C_{n+1}(X) \rightarrow C_n(X) \rightarrow C_{n-1}(X) \rightarrow \cdots\]

becomes

\[\cdots \rightarrow 0 \rightarrow \mathbb{Z}^k \rightarrow 0 \rightarrow \cdots\]

because there are no generators for \((n-1)\) and \((n+1)\) but \(k\) generators for \(C_n(X)\). We see that \(\ker D = \mathbb{Z}^k\) and \(\text{im } D = 0\).

So \(H_n(X) = \ker D / \text{im } D = \mathbb{Z}^k / 0 = \mathbb{Z}^k\). This shows that \(H_n(X)\) is free abelian with \(k\) basis elements that can be put into bijective correspondence with the \(k\) \(n\)-cells.

\[\checkmark\]

By set theory, there exists a bijection between two sets with the same size, i.e., the set of basis elements of \(H_n(X)\) and the set of \(n\)-cells.

Proposition C. If \(X\) has \(k\) \(n\)-cells, then \(H_n(X)\) is generated by at most \(k\) elements.

\[\text{Proof.}\] We will induct on \(n\).
Base Case: if X has k 0-cells, then $H_0(X) = \mathbb{Z}^k$ with $l \leq k$ because there can be at most k components.

Inductive Case: we have a long exact sequence
\[\cdots \to H_n(X_{n-1}) \to H_n(X^n) \to H_n(X^*/X^{n-1}) \to H_{n-1}(X^{n-1}) \to \cdots \]
and by the inductive hypothesis and part (a),
\[\cdots \to 0 \to H_n(X^n) \to \mathbb{Z}^k \to \cdots \]
We have $\text{im} j_* = 0$ so $H_n(X^n) \cong \ker j_*$. But $\ker j_*$ is a subgroup of \mathbb{Z}^k and so is free abelian with fewer than k generators. By assumption, n is the dimension of X so $H_n(X) = H_n(X^k) \cong \mathbb{Z}^l$ with $l \leq k$. \qed