2.7. Let \(f : (X,A) \to (Y,B) \) be a map such that both \(f : X \to Y \) and the restriction \(f : A \to B \) are homotopy equivalences. Then \(f_* : H_n(X,A) \to H_n(Y,B) \) is an isomorphism for all \(n \).

To prove this, we look at the long exact sequences (Theorem 4.1) that exist for \((X,A)\) and \((Y,B)\):

\[
\cdots \to H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to H_{n-1}(X) \to \cdots
\]

\[
\cdots \to H_n(B) \to H_n(Y) \to H_n(Y,B) \to H_{n-1}(B) \to H_{n-1}(Y) \to \cdots
\]

We have the isomorphisms shown in the diagram because homology is homotopy invariant. Hence, by the five-lemma, \(H_n(X,A) \cong H_n(Y,B) \).

Now consider the inclusion \(f : (D^n, S^{n-1}) \to (D^n / S^n, \{0\}) \). We will show that \(f \) is not a homotopy equivalence of pairs.

Suppose to the contrary there was a \(g : (D^n, D^n \setminus S^n) \to (S^{n-1}) \) that was the homotopy equivalence inverse to \(f \). Since this is a homotopy equivalence of pairs, \(g' : D^n \setminus S^n \to S^{n-1} \) must also be a homotopy equivalence. Note that \(g' \) maps all of \(D^n \) except the point \(0 \) to \(S^{n-1} \). But \(g' \) is continuous; so 0 itself must also be mapped to \(S^{n-1} \) by \(g' \). This means \(g' \) factors through \(D^n \) and

\[
g' : H_{n-1}(D^n \setminus S^n) \to H_{n-1}(S^{n-1})
\]

is the zero map. But \(H_{n-1}(S^{n-1}) \cong \mathbb{Z} \neq 0 \) and so \(g' \) is not an isomorphism. Since homotopy equivalences induce isomorphisms, \(g' \) is not a homotopy equivalence.

This is a contradiction.

Therefore, \(f \) is not a homotopy equivalence of pairs.
29) We will show that $S^1 \times S^1$ and $S^1 \vee S^1 \vee S^2$ have the same homology groups while their universal covers do not.

By Example 2.3, we know

$$H_n(S^1 \times S^1) \cong \begin{cases} \mathbb{Z} & n=0 \\ \mathbb{Z} & n=1 \\ \mathbb{Z} & n=2 \\ 0 & n \geq 3 \end{cases}$$

By Corollary 2.25, we know that the inclusions of S^1, S^1, and S^2 into $S^1 \vee S^1 \vee S^2$ induce an isomorphism between

$$\tilde{H}_n(S^1) \oplus \tilde{H}_n(S^1) \oplus \tilde{H}_n(S^1) \cong \tilde{H}_n(S^1 \vee S^1 \vee S^2).$$

From prior work,

$$\tilde{H}_n(S^1) \cong \begin{cases} \mathbb{Z} & n=1 \\ 0 & n \neq 1 \end{cases} \quad \text{and} \quad \tilde{H}_n(S^2) \cong \begin{cases} \mathbb{Z} & n=2 \\ 0 & n \neq 2 \end{cases}.$$

From the direct sums of these we see that

$$\tilde{H}_n(S^1 \vee S^1 \vee S^2) \cong \begin{cases} 0 & n=0 \\ \mathbb{Z} \oplus \mathbb{Z} & n=1 \\ \mathbb{Z} & n=2 \\ 0 & n \geq 3 \end{cases}.$$

This implies that the unreduced homology groups are

$$H_n(S^1 \vee S^1 \vee S^2) \cong \begin{cases} \mathbb{Z} & n=0 \\ \mathbb{Z} & n=1 \\ \mathbb{Z} & n=2 \\ 0 & n \geq 3 \end{cases}.$$

So it is true that $S^1 \times S^1$ and $S^1 \vee S^1 \vee S^2$ have the same homology groups.

So we move on to consider the universal covers of these spaces.
From our work in chapter 1, we have \mathbb{R}^2 as the universal cover of $S^1 \times S^1$.

And the following infinite tree with balloons as the universal cover of $S^1 \vee S^1 \vee S^2$.

Now, $H_0(\mathbb{R}^2) \cong \mathbb{Z}$ and $H_n(\mathbb{R}^2) = 0$ for $n > 1$. In particular, $H_2(\mathbb{R}^2) = 0$. However, the universal cover Y has $H_2(Y) \neq 0$. We can see this informally because Y contains a subspace that deformation retracts to S^1 and $H_2(S^1) \cong \mathbb{Z}$. More formally, #11 of Homework 9 implies that the map $H_n(A) \to H_n(Y)$ induced by the inclusion $A \to Y$ is injective. Since $H_0(A) \cong \mathbb{Z}$, we conclude $H_1(Y) \neq 0$.
Let \(X \) be the space obtained from a torus \(S^1 \times S^1 \) by attaching a Möbius band via a homeomorphism from the boundary circle of the Möbius band to a circle in the torus. Let \(M \) be the Möbius band.

Note that

\[
\tilde{H}_n(S^1 \times S^1) = \begin{cases} 0 & n = 0 \\ \mathbb{Z} & n = 1 \\ \mathbb{Z} & n = 2 \\ 0 & n \geq 3 \end{cases}
\quad \text{and} \quad
\tilde{H}_n(M) = \begin{cases} 0 & n = 0 \\ \mathbb{Z} & n = 1 \\ 0 & n \geq 2 \end{cases}
\]

because \(M \) deformation retracts to \(S^1 \). Let \(A \) be a neighborhood of the torus and \(B \) a neighborhood of the Möbius band so that \(A \) and \(B \) deformation retract to \(S^1 \times S^1 \) and \(M \), respectively, and \(A' \cup B' = X \). The Mayer-Vietoris theorem gives the following long exact sequence on reduced homology:

\[
\ldots \to \tilde{H}_3(A \cap B) \to \tilde{H}_3(A) \oplus \tilde{H}_3(B) \to \tilde{H}_3(A \cup B) \to \tilde{H}_2(A \cap B) \to \tilde{H}_2(A) \oplus \tilde{H}_2(B) \to \tilde{H}_2(A \cup B) \to \ldots
\]

We have \(\tilde{H}_n(A \cap B) = \tilde{H}_n(S^1) \) for all \(n \) because \(A \cap B \) deformation retracts to the circle along which \(S^1 \times S^1 \) and \(M \) are attached. Hence

\[
\ldots \to 0 \to \tilde{H}_3(A) \to 0 \xrightarrow{\partial_3} \mathbb{Z} \oplus 0 \xrightarrow{\Phi_3} \tilde{H}_2(A) \xrightarrow{\partial_2} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\Phi_2} \tilde{H}_1(A) \to 0
\]

We have left out the \(\tilde{H} \) portion of the sequence, but it is clear that \(\tilde{H}_0(A) = 0 \). We can also see that \(\tilde{H}_n(A) = 0 \) for \(n > 3 \). Let us consider \(\Phi_3 \), which is induced by the inclusions of \(A \cap B \) into \(A \) and \(B \) at the chain complex level. Let \(\alpha \) be the generator of \(\tilde{H}_3(A \cap B) \cong \mathbb{Z} \). With respect to \(A \), \(\alpha \) is sent to an generating loop on the torus. With respect to \(B \), \(\alpha \) gets sent twice the generating loop of the Möbius band because the boundary circle goes around twice. Hence \(\text{im} \Phi_3 = \text{im} \partial_3 = \langle (1,0,2) \rangle \) and clearly \(\ker \Phi_3 = 0 \). By exactness, \(\text{im} \partial_2 = 0 \) and this gives

\[
\mathbb{Z} \xrightarrow{\partial_2} \tilde{H}_2(A) \xrightarrow{\partial_2} 0
\]

which implies \(\tilde{H}_2(A) \cong \mathbb{Z} \). Also

\[
\tilde{H}_1(A) \cong \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle \text{im} \Phi_2 \rangle} \cong \mathbb{Z} \oplus \mathbb{Z} / \langle (1,0,2) \rangle
\]

We can think of \(\mathbb{Z} \oplus \mathbb{Z} \) as \(\langle (a,b,c) \rangle \) and thus \(\tilde{H}_1(A) \) has been quotiented by the relation \(2a = c \), which has the effect of killing one generator. Therefore \(\tilde{H}_1(X) \cong \mathbb{Z}^2 \).
Let Y be the space obtained by attaching M to $\mathbb{R}P^2$ via a homeomorphism A of its boundary circle to the standard $\mathbb{R}P^1 \subset \mathbb{R}P^2$. Let $A \neq \mathbb{R}P^2$ and $B = M$ such that Mayer-Vietoris applies giving us

$$\to \mathbb{H}_0(A \cap B) \rightarrow \mathbb{H}_0(Y) \rightarrow \mathbb{H}_0(A \cap B) \rightarrow \mathbb{H}_0(A \cap B) \rightarrow \mathbb{H}_0(Y) \rightarrow \mathbb{H}_0(Y) \rightarrow \cdots$$

Note that $\mathbb{H}_n(A) = \mathbb{H}_n(\mathbb{R}P^2) = \mathbb{Z}/2$ for $n = 0, 2, 4$ (1 mod 4) and $A\partial B$ again deformation retracts to S^1. So we have

$$\to 0 = 0 \to \mathbb{H}_0(Y) \to 0 \xrightarrow{\varepsilon} 0 \xrightarrow{\varepsilon} \mathbb{H}_0(Y) \xrightarrow{\varepsilon} \mathbb{Z} \xrightarrow{\varepsilon} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\varepsilon} \mathbb{H}_0(Y) \xrightarrow{\varepsilon} 0 \cdots$$

For the same reasons as before, $\mathbb{H}_0(Y) = 0$ and $\mathbb{H}_n(Y) = 0$ for $n \geq 3$.

Again, let α be the generator of $\mathbb{H}_1(A \cap B) \cong \mathbb{Z}$. With respect to A, α is mapped to the radial loop a in $\mathbb{R}P^2$ (note $2a = 0$). With respect to B, α is mapped to the boundary circle and so twice the generating cycle b of $\mathbb{H}_1(B)$. Hence $\text{im} \varepsilon_1 = \text{im} \{\alpha\} = \{(n, a \beta) \mid n \in \mathbb{Z}\} \cong \langle (1, a) \rangle$. The only cycle in $A \cap B$ sent by ε_1 to $(0, 0)$ is the trivial cycle, so $\text{ker} \varepsilon_1 = 0$.

By exactness, $\text{im} \varepsilon_2 = 0$ and we have $0 \xrightarrow{\varepsilon_2} \mathbb{H}_2(Y) \xrightarrow{\varepsilon_2} 0$ which implies $H_2(Y) = 0$.

We also know

$$H_1(Y) \cong \mathbb{Z} \oplus \mathbb{Z} \cong \mathbb{Z} \oplus \mathbb{Z} / \langle (1, 2) \rangle.$$

We can represent this as $\langle a, b \mid a + b = 1 + 2, 2a = 0, a + 2b = 0 \rangle$. This group is \mathbb{Z}_4 because going once around $\mathbb{R}P^1$ is equivalent to twice around the boundary of M. Thus going twice around $\mathbb{R}P^1$, that is, the identity, is equivalent to four times around M. Therefore, $H_1(Y) \cong \mathbb{Z}_4$.

This agrees with #21 of Homework #1, in which we found $H_1(Y) \cong \mathbb{Z}_4$.

$$\langle a, b \mid a + b = 1 + 2, 2a = 0, a + 2b = 0 \rangle = \langle b \mid 4b = 0 \rangle.$$
32) Let X be a topological space and SX the suspension of X.

Let A be the subspace of SX defined by $X \times [0, \frac{1}{3}]$. Let B be the subspace of SX defined by $X \times [\frac{2}{3}, 1]$. By the definition of SX, $A \cap B = X$ and A, B are contractible. So Mayer-Vietoris gives

$$\cdots \to H_n(A) \oplus H_n(B) \to H_n(SX) \to H_{n-1}(A \cap B) \to H_{n-1}(A) \oplus H_{n-1}(B) \to \cdots$$

which we can rewrite as

$$\cdots \to 0 \oplus 0 \to H_n(SX) \to H_{n-1}(X) \to 0 \oplus 0 \to \cdots$$

By the in-class example of ΣI, this implies $H_n(SX) \cong H_{n-1}(X)$.

Suspension defined on page 8.