Section 1.1

8) We will show that Borsuk-Ulam does not generalize to the torus.

That is for any continuous \(f : S^1 \times S^1 \to \mathbb{R}^2 \) it is not necessarily the case that there exists \((x, y) \in S^1 \times S^1 \) such that \(f(x, y) = f(-x, y) \).

Let the torus lie in \(\mathbb{R}^3 \) above the \(xy \)-plane and let \(p \in \mathbb{R}^3 \) be a point higher than the torus and above its hole. Then we can define a map \(F \) that sends a point from the torus to the intersection of the ray through the point emanating from \(p \) and the \(xy \)-plane.

This function is intuitively continuous because it preserves nearness. More formally, it is clear that for any neighborhood \(N \) in the plane we can find a neighborhood \(M \) on the torus such that \(f(M) \subset N \).

Now, suppose \(f(x_1, y_1) = f(x_2, y_2) \) for some \((x_1, y_1), (x_2, y_2) \in S^1 \times S^1 \). Then \((x_1, y_1) \) and \((x_2, y_2) \) both lie on the ray from \(p \) to \(F(x_1, y_1) \). This implies that \((x_1, y_1) \) and \((x_2, y_2) \) are on the "same side" of the torus because \(p \) is above the hole. Thus \(y_2 \neq -y_1 \).

So Borsuk-Ulam does not generalize to the torus.
Proposition Let \(A_1, A_2, A_3 \) be compact sets in \(\mathbb{R}^3 \). Then there is a plane \(P \in \mathbb{R}^3 \) that simultaneously divides each \(A_i \) into two pieces of equal measure.

Proof. Let \(a \in A_1 \) and let \(S^2 \) be a sphere centered at \(a \). First, we will identify a plane for each \(s \in S^2 \). Then we will use the Borsuk-Ulam theorem to show that one of these planes divides each \(A_i \) in half.

Step one: For each \(s \in S^2 \) there are a family of planes \(\{P_s^2\}_{s \in S^2} \) containing \(a \) and \(s \). Note that this is the same family of planes as \(\{P_{-s}^2\}_{s \in S^2} \) where \(-s \) is the antipodal point of \(s \).

We continuously identify the sides of a plane \(\alpha \) and \(\beta \) so that \(\alpha s = \beta_{-s} \) and \(\beta s = \alpha_{-s} \) for all \(P \in \{P_s^2\}_{s \in S^2} \) and \(P_{-s}^2 \). In other words, for a plane through \(-s \), \(a \), \(s \), the \(\alpha / \beta \) labels are reversed with respect to \(s \) and \(-s \).

Define \(\alpha_{ps}(A_i) \) to be the measure of \(A_i \) on the \(\alpha \)-side of \(P^s \), and define \(\beta_{ps}(A_i) \) to be the measure of \(A_i \) on the \(\beta \)-side of \(P^s \). Now, define

\[
M: \{P_s^2\}_{s \in S^2} \to \mathbb{R}, \quad P \mapsto \alpha_p(A) - \beta_p(A).
\]

This map is continuous because planes from the same family that are very close together will split the measure of \(A_i \) in very similar ways. Let \(P \in \{P_s^2\}_{s \in S^2} \) and let \(Q \) be \(P \) span \(180^\circ \) about \(a \). Then \(Q \in \{P_s^2\}_{s \in S^2} \). Note that

\[
M(P) = \alpha_p(A) - \beta_p(A) = -\left(\beta_p(A) - \alpha_p(A)\right) = -\left(\alpha_q(A) - \beta_q(A)\right) \quad \forall \quad P \in \{P_s^2\}_{s \in S^2}.
\]

So by the intermediate value theorem, \(M(R) = 0 \) for some \(R \in \{P_s^2\}_{s \in S^2} \). That is, some plane through \(a \) and \(s \) cuts \(A_i \) in half. By the axiom of choice, choose one such plane for each \(s \in S^2 \) and label it \(P^s \).
Step two: Now that we have a plane P^x corresponding to every $x \in S^2$, we define

$$\mu : S^2 \to \mathbb{R}^2, \quad \begin{pmatrix} \alpha_x(A_z) - \beta_x(A_z) \\ \alpha_x(A_z) - \beta_x(A_z) \end{pmatrix}$$

This is continuous for the same reason that M was continuous.

By the Borsuk-Ulam theorem, $\mu(x) = \mu(-x)$ for some $x \in S^2$.

This means that both the first coordinate and second coordinate of $\mu(x)$ and $\mu(-x)$ are equal, in the first case,

$$\alpha_{px}(A_z) - \beta_{px}(A_z) = \alpha_{px}(A_z) - \beta_{px}(A_z)$$

$$= \beta_{px}(A_z) - \alpha_{px}(A_z).$$

This implies that $\alpha_{px}(A_z) = \beta_{px}(A_z)$ and thus P^x cuts A^2 in half. In the second case, similarly,

$$\alpha_{px}(A_z) - \beta_{px}(A_z) = \alpha_{px}(A_z) - \beta_{px}(A_z)$$

$$= \beta_{px}(A_z) - \alpha_{px}(A_z).$$

and so $\alpha_{px}(A_z) = \beta_{px}(A_z)$. Hence, P^x cuts A_3 in half as well.

Since P^x was chosen because it cuts A_i in half, we can conclude that P^x simultaneously divides each A_i into two pieces of equal measure. □
10) Let X and Y be topological spaces and $(x_0,y_0) \in X \times Y$ such that $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1((x_0, y_0)) \cong \pi_1(Y, y_0)$. Let f be a loop contained in $X \times \{y_0\}$ and let g be a loop contained in $\{x_0\} \times Y$. We will show that $f \cdot g \cong g \cdot f$.

Define
\[f_\varepsilon(s) = \begin{cases}
 x_0 & 0 \leq s \leq \varepsilon \\
 f(2s) & \frac{\varepsilon}{2} \leq s \leq 1-rac{\varepsilon}{2} \\
 x_0 & \frac{\varepsilon}{2} \leq s \leq 1.
\end{cases} \]

Observe that $f_\varepsilon(s)$ comprises the entire loop f from $0 \leq s \leq \frac{\varepsilon}{2}$ and then x_0 for $\frac{\varepsilon}{2} \leq s \leq 1$. Thus, $f_\varepsilon(s) \cong f(s)$. Also $f_\varepsilon(s)$ remains at x_0 for $0 \leq s \leq \frac{\varepsilon}{2}$ and then traverses f from $\frac{\varepsilon}{2} \leq s \leq 1$. Thus, $f_\varepsilon(s) \cong f(s)$.

Define
\[g_\varepsilon(s) = \begin{cases}
 x_0 & 0 \leq s \leq \frac{1-\varepsilon}{2} \\
 g(2s) & \frac{1-\varepsilon}{2} \leq s \leq 2-\frac{\varepsilon}{2} \\
 x_0 & 2-\frac{\varepsilon}{2} \leq s \leq 1.
\end{cases} \]

Note that $g_\varepsilon(s)$ is composed of x_0 for $0 \leq s \leq \frac{\varepsilon}{2}$ and then the loop g for $\frac{\varepsilon}{2} \leq s \leq 1$. Hence, $g_\varepsilon(s) \cong g(s)$. Furthermore, $g_\varepsilon(s)$ is composed of g for $0 \leq s \leq \frac{\varepsilon}{2}$ and then x_0 for $\frac{\varepsilon}{2} \leq s \leq 1$. Hence, $g_\varepsilon(s) \cong g(s)$.

Via the isomorphism from the hypothesis, a loop from $X \times \{y_0\}$ and a loop from $\{x_0\} \times Y$ determine a loop in $X \times Y$. Consider $H_\varepsilon(s) = (f_\varepsilon(s), g_\varepsilon(s))$. We have $H_\varepsilon(s) = (f_\varepsilon(s), g_\varepsilon(s)) \cong f \cdot g$ and $H_\varepsilon(s) = (f_\varepsilon(s), g_\varepsilon(s)) \cong g \cdot f$.

Moreover, $H_\varepsilon(s)$ is continuous because of the isomorphism and since $f_\varepsilon(s)$ and $g_\varepsilon(s)$ are continuous. Therefore,
\[
 f \cdot g \cong g \cdot f.
\]
16. We will show that no retractions \(\gamma : X \to A \) exist in the following situations. Recall the proposition from class that states \(i_* : \pi_1(A, a_0) \to \pi_1(X, x_0), [\gamma] \to [i(\gamma)] \) is injective whenever a retraction exists from \(X \) onto \(A \).

(a) \(X = \mathbb{R}^3 \) and \(A \cong S' \). Note that \(\mathbb{R}^3 \) is simply-connected, so \(\pi_1(X, x_0) = \{e\} \) where \(e \) is the constant loop. Thus, \(i_* \) maps all elements of \(\pi_1(A, a_0) \) to \([e] \). But \(\pi_1(S', a_0) \cong \mathbb{Z} \), and has more than one element, so \(i_* \) is not injective. This means no retraction exists.

(b) \(X = S' \times D^2 \) and \(A = S' \times S' \). Since \(S' \) and \(D^2 \) are path-connected, \(\pi_1(X) \cong \pi_1(S') \times \pi_1(D^2) \cong \mathbb{Z} \times \mathbb{Z} \) and also \(\pi_1(A) \cong \pi_1(S') \times \pi_1(S') \cong \mathbb{Z} \times \mathbb{Z} \). The homomorphism induced by the inclusion map \(i : A \to X \) is \(i_* : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \), which is clearly not injective. More geometrically, consider \([f] \in \pi_1(A)\) — the class of loops that go once around the torus hole — and \([g] \in \pi_1(A)\) — the class of loops that go once around the torus hole and once around its thickness. When \([f]\) and \([g]\) are included into \(X \) the loop of \([g]\) around the thickness can be homotoped through the simply-connected \(D^2 \) to the basepoint. Hence, \([i(f)] = [i(g)]\) and \(i_* \) is not injective. This implies no retraction exists.

(c) \(X = S' \times D^2 \) and \(A \) as shown.
It is given that $A \cong S^1$. So $\pi_1(A) \cong \mathbb{Z}$. Let f be a loop in A based at $a_0 \in A$. Now consider $i(f)$, a loop in X based at $a_0 \in X$. Since A does not encircle the hole of the solid torus, neither does $i(f)$. Thus, $i(f)$ can be homotoped to c, the constant loop at a_0. Since f was arbitrary and $\pi_1(A)$ is non-trivial, it follows that i_* is not injective. So there is no retraction from X to A.

(d) $X = D^2 \vee D^2$ and $A = S^1 \vee S^1$. Recall that the wedge sum is formed by taking the disjoint union and identifying one point from each part to a single point.

Let a_0 be the wedge point of both A and X. Then $\pi_1(A, a_0)$ is non-trivial because loops that completely circle one side or the other are not homotopic to c. However, $\pi_1(X, a_0)$ is trivial because all loops can be homotoped through either disk to c. This implies that i_* again is not injective.

(e) X is a disk with two boundary points identified and A is its boundary $S^1 \vee S^1$.

I believe $\pi_1(X) \cong \mathbb{Z}$ and $\pi_1(A) \cong \mathbb{Z} \times \mathbb{Z}$ with $i_* : \pi_1(A) \to \pi_1(X)$ defined by $i_*(m, n) = m+n$. If this is the case, then i_* is clearly not injective because, for instance, $i_*(1, 1) = i_*(0, 2) = 2$. But for good measure, here is a homotopic justification.
Consider the loops f and g in A. Obviously, $f \not\cong g$ in A.

\[\infty \quad \text{f} \quad \quad \quad \infty \quad \text{g} \]

However, in X, f and g are homotopic via the figure:

\[\text{t=0} \quad \text{t=1} \]

Hence, $[f(t)] = [g(t)]$ and i_\ast is not injective.

(F) X is the Möbius band and A is its boundary circle.

We know $\pi_1(A) \cong \mathbb{Z}$. Since the Möbius band can be deformation-retracted to its midline circle, $\pi_1(X) \cong \pi_1(S^1) \cong \mathbb{Z}$. So there exist isomorphisms $\phi_A : \pi_1(A) \to \mathbb{Z}$ and $\phi_X : \pi_1(X) \to \mathbb{Z}$.

Let F be a loop that goes entirely around A n times. Then $i(F)$ is homotopic to a loop that goes around X $2n$ times. Hence $\phi_A(F) = n$ and $\phi_X(i(F)) = 2n$. Suppose $r : X \to A$ is a retraction.

Then $r(i(F)) = F$ because r is the identity on A. So by isomorphism $r(2n) = n$. Since r is a homomorphism,

\[n = r(2n) = r(n + n) = r(n) + r(n) = 2r(n). \]

It follows that $r(n) = \frac{n}{2}$. But $\frac{n}{2} \not\in \mathbb{Z}$ for all $n \in \mathbb{Z}$, so r cannot exist. Therefore, the Möbius band does not retract to its boundary circle.