ANTIBIOTICS
Inhibitors of Bacterial Cell Wall Synthesis

Penicillin (β-Lactam)

I Penicillin G, Penicillin V
II Methacillin, Nafcilin (Beta-Lactamase resistant)
III Amoxicillin, Ampicillin
IV anti-pseudomonal

- Methacillin resistant: alteration of the a.a. sequences of PBP
- Renal excretion mainly by secretion (inhibited by probenecid)
- Side effects: hypersensitivity due to minor determinants
- Methacillin: interstitial nephritis

USES:
- Gram +ve infections
- Treponema (Syphilis DOC)
- Pseudomonas (Penicillin IV + Aminoglycosides)

Cephalosporins (β-Lactam)

I Cephazolin
II Cephamandole, Cephotetan
III Ceftriaxone, Cefoperazone (anti-pseudomonal)
IV (good for gram +ve and –ve) penetrates the CSF

- Renal elimination
- Ceftriaxone & Cefoperazone biotransformation in the liver.
• Cephamandole, Cephotetan & cefoperazone all have been noted to have a disulfiram like reaction.
• Thrombocytopenia associated with cefamandole and cefoperazone NOT cefotetan!!
• Pyrogenic (highest rates of drug induced fever)

USES:
• Respiratory Tract Infections
• Prophylaxis: abdominal surgery (Cephazolin)
• Meningitis (gram –ve) and endocarditis is treated with CEFTRIAXONE
• CEFTRIAXONE (IM) as single dose DOC for simple gonorrhea. (painful)

Not covered by cephalosporins:
(LAME)

Listeria Monocytogenes, Atypicals (Chlamydia) MRSA and Enterococci

Monobactams β-Lactam Aztreonam

• Resistant to betalactamases
• GRAM NEGATIVE ACTIVITY ONLY
• Can be used in patients who are allergic to penicillins or cephalosporins (i.e. no cross sensitivity with other B-lactams)
• Work synergistically with aminoglycosides
Carbapenams β-Lactam:

Imipenam

- High Resistant to betalactamases
- no cross sensitivity with other B-lactams
- LARGEST SPECTRUM OF ACTIVITY of any B-lactam
- Septicemia of unknown origin: treat with Imipenam while the test results are coming, then give more narrow spectrum antibiotic
- MAJOR DISADVANTAGE: renal tubular cells metabolize the drug by *renal dipeptidase* and cause decreased urinary concentration, so IMIPENAM + CILASTATIN (inhibitor of enzyme) are given together
- SIDE EFFECTS: SEIZURES, nausea, vomiting, rashes, etc.

Meropenam

- Does not need cilastatin
- Less likely to cause seizures
NON β-Lactam ANTIBIOTICS

VANCOMYCIN

- Used for Staph or Strep infections RESISTANT to methicillin (i.e. MRSA and MRSE)
- Inhibits cell wall synthesis by binding to the 2 terminal d-alanine
- Resistance by replacing the terminal d-alanine by d-lactate
- Vancomycin must be given IV, cannot be absorbed in GI tract
- Vancomycin potentiates the nephrotoxicity of aminoglycosides
 - SIDE EFFECTS:
 1. RED-NECK SYNDROME: too rapid infusion...histamine release...slow down infusion
 2. OTOTOXICITY: Irreversible loss of hearing (enhanced toxicity by loop diuretics and aminoglycosides)

FOSFOMYCIN

- Analogue of PEP, inhibits the synthesis of NAM (inhibits cell wall synthesis)
- Gram +ve and –ve spectrum
- SINGLE DOSE ORAL: treatment of uncomplicated UTI ONLY IN FEMALES!!!

***DRUGS THAT ARE CONTRAINDICATED IN PREGNANCY:

1. Aminoglycosides
2. Erythromycin estolate
3. Clarithromycin
4. Tetracyclines
5. Fluoroquinolones
Inhibitors of Bacterial Protein Synthesis

<table>
<thead>
<tr>
<th>*</th>
<th>EVENT</th>
<th>SITE</th>
<th>ANTIBIOTIC</th>
<th>MOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Formation of Initiation Complex</td>
<td>30S</td>
<td>Aminoglycosides (bacteriostatic and also distorts reading frame; bacteriocidal)</td>
<td>Inhibits formation</td>
</tr>
</tbody>
</table>
| 2 | Incorporate next aa | 50S | Quinupristin Dalfopristin
Tetracyclines | Inhibits insertion into the A-site |
| 3 | Formation of the peptide bond | 50S | Chloramphenicol | Inhibits peptidyl transferase |
| 4 | Translocation | 50S | Macrolides Clindamycin | Inhibits translocase |

- (Buy AT 30, sell when 50)
- all bacteriostatic except aminoglycosides
Aminoglycosides

Amikacin, gentamicin, neomycin, tobramycin, streptomycin

MOA:
- bind irreversibly to 30S ribosome and prevent the formation of the initiation complex (BACTERIOSTATIC)
- cause misreading of the genetic code of the mRNA leading to incorrect aa incorporation into proteins (BACTERICIDAL)

Bacterial resistance:
- bacterial enzymes that **phosphorylate, acetylate** and **adenylate** the aminoglycoside (plasmid mediated)
- decrease influx (p-glycoprotein)

Pharmacokinetics:
- 100% water soluble; can be given by IV only
- Cannot be used for intracellular infections (exception; active T.B.)
- VERY HIGH concentrations found in the kidneys and inner ear.
- Excreted renally

Side effects:

1. **OTOTOXICITY:** Vestibular (reversible) and Auditory (Irreversible and additive)
2. NEPHROTOXICITY: Mild renal impairment (reversible) → metabolic acidosis

3. Neuromuscular blockade: Ach cannot be released → resp. paralysis. Treat by Ca++ ion infusion.

Drug interactions:
- B-lactams and aminoglycosides work synergistically. However, do not put in same IV line.

USES:
- GRAM –ve infections
- Streptomycin is first line drug for treating active T.B.

Tetracyclines

* tetracycline, demeclocycline, doxycycline, minocycline

MOA:
- bind irreversibly to 30S ribosome and prevent the formation of the initiation complex (BACTERIOSTATIC)
- Demeclocycline has anti-ADH effect.

Resistance: production of an active transport system out of cell

Pharmacokinetics:
- oral absorption is impaired by the presence of ions (calcium, iron, antacids)
- renal excretion (all except doxycycline; hepatic)
- minocycline achieves good levels in tears and saliva (eradicates meningococci when it resides in the tear ducts, but DOC is rifampin)
- good penetration in bone → but get inactivated (useless)
SIDE EFFECTS:
1. Teeth: yellow to brown discoloration in children
2. Outdated tetracyclines produce toxic breakdown products that cause a form of FANCONI SYNDROME. (n/v, polyuria, polydipsia, proteinuria, glycosuria and acidosis)
3. Hepatic: Contraindicated in pregnancy
4. Other: phototoxicity and vestibular ototoxicity (minocycline)

USES:
- DOC for Mycoplasma pneumoniae, Chlamydia and Rickettsial infections.
- Minocycline used for eradicating asymptomatic nasopharyngeal meningococcal carrier state.
- Doxycycline→ gonococcal infections
- Demeclocycline→ treat chronic hyponatremia in SIADH
- Prophylaxis in acne

Chloramphenicol
(Underused antibiotics)
- Binds reversibly with the 50S→ prevents protein synthesis (bacteriostatic)
- Metabolized by hepatic glucoronidation

Side effects:
1. Hematological: (most common) True toxicity is dose dependant→ reticulocytopenia, anemia, with or without
thrombocytopenia. **Aplastic Anemia** may appear weeks or months after stopping the drug

2. GREY BABY SYNDROME: (decreased glucuronidation; glucuronyl transferase is not active in neonates)

3. Irreversibly inhibits cytochrome P450, and may inhibit the metabolism of drugs like phenytoin, sulfonylureas (tolbutamide) and warfarin.

Macrolide Antibiotics

Erythromycin, Clarithromycin (twins)

Azithromycin (cousin)

MOA: binds to 50S and inhibits translocation reactions

SIDE EFFECTS:

1. Allergy: fever, rash
2. Cholestatic Jaundice; primarily caused by the estolate form
3. GI tract: stimulate motilin receptors and cause GI distress
4. Erythromycin may cause ototoxicity when given at very high doses (HIV +ve patients)

DRUG INTERACTIONS:

- Erythromycin and clarithromycin inhibit CYP3A4, may potentiate the effects carbamazepine, theophylline etc.

Erythromycin

- Inactivated by gastric content, so must be enteric coated or in salt form.
- Estolate is the best absorbed oral form
• Wide tissue distribution and is excreted via biliary system

Uses:
• gram +ve cocci (not MRSA) Resp. tract infections
• atypical organisms (chlamydia and mycoplasma pneumoniae)
• Pneumonitis is non AIDS patients
• Legionnaires’ disease

Clarithromycin

Uses: Increased activity against **MAC** infections and **H.Pylori**.

Azithromycin

• Accumulates in tissues and blood cells and is excreted renally
• **Co-drug of choice for Chlamydia**
• Used for resp. tract, skin and soft tissue infections
• Safe in pregnancy

Clindamycin

• Binds to 50S and blocks translocation reactions
• EFFECTIVE AGAINST **GRAM +VE ORGANISMS** (Not MRSA) AND **ANEROBES** (B.fragilis) ONLY!!
• Well distributed in fluids, tissues and BONE.
• RESISTANCE: Plasmid mediated methylation at the binding site.

USES:
• Anaerobic infections
• **CLINDAMYCIN + PYRIMETHAMINE** used for Toxoplasmosis gondii
• Alternative for beta-lactam antibiotics for staph and strep

SIDE EFFECTS:

1. PSEUDOMEMBRANOUS COLITIS: due to a superinfection with *Clostridium difficile* → necrotizing toxin released (Metronidazole is the DOC with Vancomycin as an alternate)
2. Skin rashes
3. NEUROMUSCULAR BLOCKADE: Inhibit neuromuscular transmission

Quinupristin/Dalfopristin

- MOA: bind to 50S and prevent the interaction of aminoacyl-tRNA with the A-site
- Must be given parenterally (IV)
- Inhibits CYP 3A4 which may lead to drug-drug interactions
- New drug used for:
 1. Drug resistant Gram +ve cocci
 2. **VRSA and VRE** (S.aureus & enterococci)

Linezolid

- 1st member of new group of oxazolidones
- binds to 50S and prevents formation of initiation complex
- USED for: VRSA, VRE and MRSA in people allergic to vancomycin
Daptomycin

- Given IV
- Binds to bacterial membranes causing a rapid decrease of membrane potential → loss of protein and nucleotide synthesis → cell death
- Spectrum is for AEROBIC GRAM +VE bacteria that are methicillin, vancomycin and linezolid resistant strains
- Side effects: superinfections

Metronidazole

MOA: unknown

USES:

1. **Antiprotozoal**: Metronidazole is the DOC for most infections caused by *Entamoeba histolytica*, *Giardia* species, and *Trichomonas vaginalis*.
2. **Antibacterial**: DOC for most anaerobic infections
3. **BMT regimen** (*Bismuth, Metronidazole, Tetracycline*): for *H. Pylori*

Side Effects:

- Metallic taste in mouth
- Brown/black urine
- Neurotoxicity
- **DISULFIRAM-LIKE INTERACTION WITH ETHANOL!!!!!**
- Metronidazole + Disulfiram → PSYCHOSIS
ANTI-METABOLITE ANTIBIOTICS

SULFONAMIDES

- Structural analogues of PABA
- MOA: Sulfonamides are competitive inhibitors of the bacterial enzyme DIHYDROPTEROATE SYNTHETASE
- Bacteriostatic action
- Classified into 4 groups; rapidly absorbed/excreted, poorly absorbed (Sulfasalazine), topically (Ag Sulfadiazine) used and long acting.
- Sulfasalazine is broken down by GI bacteria; mesalamine (DOC for treating ulcerative colitis)

Pharmacokinetics:
- Well distributed in the body including the CSF
- Part of the dose is acetylated in the liver
The acetylated conjugates tend to be less water soluble (unique characteristic) and may crystallize in the kidney → hematuria!!

Side effects:
- Crystalluria
- Rashes (Stevens-Johnson syndrome)
- Photosensitivity
- **Contraindicated in neonates** and **last month of pregnancy** because they displace bilirubin from proteins → jaundice and kernicterus
- They bind to plasma proteins → increase drug interactions → increase the effect of methotrexate, warfarin and phenytoin.

USES:
1. UTIs (sulfoxazole)
2. **DOC FOR NOCARDIA INFECTIONS**
3. **TOC FOR TOXOPLASMOSIS (SULFADIAZINE + PYRIMETHAMINE)**
4. Ag Sulfadiazine → BURNS
5. Sulfasalazine → Ulcerative colitis

COTRIMOXAZOLE

(Sulfamethoxazole + Trimethoprim)

- Trimethoprim is an **inhibitor of DIHYDROFOLATE REDUCTASE**
- Side effects: anemia, leucopenia or thrombocytopenia

DOC FOR SALMONELLA AND PNEUOMOCYSTIS CARINII INFECTIONS.
Contraindications: Pregnancy and pt. with G6PD deficiencies
QUINOLONES (FQS)
Ciprofloxacin, ofloxacin,
- Inhibit the enzyme DNA gyrase \(\rightarrow \) inhibit DNA synthesis \(\rightarrow \) bactericidal
- Activity against gram +ve and –ve cocci and anaerobes.
- Active when administered orally (inhibited by antacids) and have a wide distribution, including BONE.

Side effects:
- Photosensitivity; lomefloxacin, sparfloxacin
- Increased QT interval; for gatifloxacin, grepafloxacin and sparfloxacin.

Uses:
- UTI, prostatitis, children with cystic fibrosis.
- RTI caused by \(S. \ pneumonias \)
- CIPROFLOXACILIN used for the prophylaxis and treatment of “traveler’s diarrhea”
- Diabetic foot complications: FQ + anaerobic drug
ANTITUBERCULAR DRUGS

\textit{isoniazid (INH), rifampin, ethambutol, pyrazinamide}

- TB caused by \textit{Mycobacterium tuberculosis} (acid fast)
- M. leprae \rightarrow Leprosy \rightarrow DOC DAPSONE
- \textit{M. avium} $\&$ \textit{M. intercellulare} produce a \textbf{pulmonary infection}.
- \textit{Mycobacterium avium complex (MAC)} is a mixture of the 2 bacteria and produce a \textbf{disseminated infection} (GI \rightarrow Lungs \rightarrow Liver \rightarrow Spleen) in AIDS patients.

ISONIAZID (INH)

- Bacteriostatic for resting bacilli, bacteriocidal for dividing bacteria
- PRODRUG \rightarrow Must be activated by catalase/peroxidase \rightarrow penetrate cells \rightarrow \textbf{MOA: inhibits synthesis of mycolic acids} (cell wall component)
- \textbf{Bacterial resistance: mutation of the catK (Kat) gene that codes for catalase}
- Given orally \rightarrow needs catalase for activation
- Biotransformation occurs in the liver via acetylation (you get SLE-like syndrome in slow acetylation while taking any of these drugs; \textit{isoniazid, hydralazine, procainamide})
- Severe hepatic insufficiency \rightarrow dose reduction

SIDE EFFECTS:

- Peripheral neuritis (use B6)
- Age-dependant hepatitis (worsens with age)
- Hemolysis in G6PD deficiency
- SLE-like syndrome in slow acetylators
RIFAMPIN

- Inhibits DNA-dependant RNA polymerase \rightarrow inhibits RNA synthesis \rightarrow bactericidal (for both intra and extra cellular oraganisms)
- RESISTANCE: Change in enzyme!! (never use drug alone)

SIDE EFFECTS:
- Hepatitis
- Flu-like syndrome
- Induction of cytochrome P450
- **Orange-red metabolites (stain contact lens)**

PYRAZINAMIDE

- MOA: unknown
- Used against active TB
- Side effects: hyperuricemia & arthralgia

ETHAMBUTOL

- Inhibits bacterial cell wall component (arabinogalactan)
- Bacteriostatic \rightarrow works for *M.tuberculosis* only
- Side effects: dose dependant **retrobulbar neuritis** \rightarrow
 diminished ability to differentiate red from green
ANTIVIRAL DRUGS

HAART → Highly Active Anti-Retroviral Therapy → 2 NRTI & PI

Nucleoside Reverse Transcriptase Inhibitors (NRTIs)

ZIDOVUDINE (AZT; Azidothymidine)
- Incorporated into viral DNA and causes chain termination
- Can inhibit reverse transcriptase
- Orally active, metabolized by liver via glucoronidation
- Drug interactions: don’t use with drugs that interfere with glucoronidation → e.g. aspirin, indomethacin
- Uses: HIV infections, treat HIV +ve pregnant mother to prevent vertical transmission

DIDANOSINE (DDI)
- Side effects: peripheral neuropathy, *pancreatitis (fatal)*, liver dysfunction

ZALCITABINE (DDC)
- Side effects: *peripheral neuropathy*, pancreatitis (DON’T GIVE WITH DIDANOSINE), GI distress

LAMIVUDINE (3TC)
- LEAST TOXIC OF THE NRTIs, *Used to prevent and treat Hepatitis B*

STAVUDINE (D4T)
- Side effects: *peripheral neuropathy*, myelosuppression
NON-Nucleoside Reverse Transcriptase Inhibitors (NRTIs)

Nevirapine → hepatotoxicity → induces CPY3A

Protease Inhibitors (PIs)
- Inhibits aspartate protease (enzyme that cleaves the poly-protein into functional viral proteins)
- Prevents the spread of the viral infection
- Drugs:
 1. Saquinavir
 2. Ritonavir
 3. Indinavir (nephrolithiasis, Crix belly)

Unacceptable Drug Combinations:
1. Didanosine + Zalcitabine combo has overlapping toxicity.
2. Zalcitabine + Stavudine combo has overlapping toxicities.
3. Zidovudine + Stavudine combo is antagonistic.

Fusion Inhibitors: Enfuvirtide
Inhibits the fusion process by mimicking the peptide sequence of gp41

DNA Polymerase Inhibitors

Acyclovir
- MOA: monophosphorylated by viral thymidine kinase (TK) → further activated by host-cell kinases to the triphosphate.
• Acyclovir- triphosphate is both a substrate for and inhibitor of viral DNA polymerase
• It is a chain terminator (lacks a 3’-hydroxyl group.

DOC: **HSV, VZV and varicella** (not effective in recurrent episodes)
Side effects: Nephropathy

Ganciclovir
• No chain termination
• Side effects: neutropenia, leucopenia, thrombocytopenia (dose-limiting hematotoxicity)
• Uses: CMV chorioretinitis, prophylaxis against CMV in AIDS and transplant patients

Foscarnet
• Only inhibits DNA polymerase
• Side effects:
 1. dose limiting nephrotoxicity
 2. hypocalcemia → tremors and seizures
 3. **AVOID PENTAMIDINE** IV → increases seizures → **FATAL**

RNA Polymerase Inhibitors

Amantadine
• MOA: blocks attachment and penetration of Influenza A virus
• SIDE EFFECTS:
 1. Seizures
 2. **LIVEDO RETICULARIS** (Purple ankles)
 3. atropine like effect
 4. orthostatic hypotension
• Uses: Influenza A, anti-parkinsons agent
Ribavarin

MOA: inhibits viral RNA polymerase, inhibits capping of mRNA

Uses: HEPATITIS C, Respiratory syncytial virus, Influenza A/B

Side effects: decreased respiratory function, teratogenic and mutagenic